Subshifts of quasi-finite type

被引:30
|
作者
Buzzi, J [1 ]
机构
[1] CNRS, Ctr Math, UMR 7640, F-91128 Palaiseau, France
[2] Ecole Polytech, F-91128 Palaiseau, France
关键词
D O I
10.1007/s00222-004-0392-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:369 / 406
页数:38
相关论文
共 50 条
  • [1] Subshifts of quasi-finite type
    Jérôme Buzzi
    Inventiones mathematicae, 2005, 159 : 369 - 406
  • [2] QUASI-FINITE PROCESSION OF ISOLS
    MIKHEEV, VL
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1989, (09): : 85 - 87
  • [3] SUBGROUPS OF QUASI-FINITE GROUPS
    DERYABINA, GS
    OLSHANSKII, AY
    RUSSIAN MATHEMATICAL SURVEYS, 1986, 41 (06) : 203 - 204
  • [4] PROPERTIES OF QUASI-FINITE MODULES
    VIDAL, R
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 273 (13): : 562 - &
  • [5] STRUCTURE OF QUASI-FINITE MODULES
    VIDAL, R
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 275 (05): : 323 - &
  • [6] IRREDUCIBLE QUASI-FINITE REPRESENTATIONS OF A BLOCK TYPE LIE ALGEBRA
    Gao, Ming
    Gao, Yun
    Su, Yucai
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (02) : 511 - 527
  • [7] Unitary quasi-finite representations of W∞
    Kac, VG
    Liberati, JI
    LETTERS IN MATHEMATICAL PHYSICS, 2000, 53 (01) : 11 - 27
  • [8] Compact maps and quasi-finite complexes
    Cencelj, M.
    Dydak, J.
    Smrekar, J.
    Vavpetic, A.
    Virk, Z.
    TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (16) : 3005 - 3020
  • [9] Algebraic properties of quasi-finite complexes
    Cencelj, M.
    Dydak, J.
    Smrekar, J.
    Vavpetic, A.
    Virk, Z.
    FUNDAMENTA MATHEMATICAE, 2007, 197 : 67 - 80
  • [10] Unitary Quasi-finite Representations of W∞
    Victor G. Kac
    José I. Liberati
    Letters in Mathematical Physics, 2000, 53 : 11 - 27