Explainable Reinforcement Learning through a Causal Lens

被引:0
|
作者
Madumal, Prashan
Miller, Tim
Sonenberg, Liz
Vetere, Frank
机构
基金
澳大利亚研究理事会;
关键词
EXPLANATIONS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Prominent theories in cognitive science propose that humans understand and represent the knowledge of the world through causal relationships. In making sense of the world, we build causal models in our mind to encode cause-effect relations of events and use these to explain why new events happen by referring to counterfactuals - things that did not happen. In this paper, we use causal models to derive causal explanations of the behaviour of model-free reinforcement learning agents. We present an approach that learns a structural causal model during reinforcement learning and encodes causal relationships between variables of interest. This model is then used to generate explanations of behaviour based on counterfactual analysis of the causal model. We computationally evaluate the model in 6 domains and measure performance and task prediction accuracy. We report on a study with 120 participants who observe agents playing a real-time strategy game (Starcraft II) and then receive explanations of the agents' behaviour. We investigate: 1) participants' understanding gained by explanations through task prediction; 2) explanation satisfaction and 3) trust. Our results show that causal model explanations perform better on these measures compared to two other baseline explanation models.
引用
收藏
页码:2493 / 2500
页数:8
相关论文
共 50 条
  • [21] An integrated network embedding with reinforcement learning for explainable recommendation
    Vo, Tham
    SOFT COMPUTING, 2022, 26 (08) : 3757 - 3775
  • [22] Customer Acquisition via Explainable Deep Reinforcement Learning
    Song, Yicheng
    Wang, Wenbo
    Yao, Song
    INFORMATION SYSTEMS RESEARCH, 2024,
  • [23] Explainable navigation system using fuzzy reinforcement learning
    Rolando Bautista-Montesano
    Rogelio Bustamante-Bello
    Ricardo A. Ramirez-Mendoza
    International Journal on Interactive Design and Manufacturing (IJIDeM), 2020, 14 : 1411 - 1428
  • [24] Explainable Reinforcement Learning for Human-Robot Collaboration
    Iucci, Alessandro
    Hata, Alberto
    Terra, Ahmad
    Inam, Rafia
    Leite, Iolanda
    2021 20TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS (ICAR), 2021, : 927 - 934
  • [25] An integrated network embedding with reinforcement learning for explainable recommendation
    Tham Vo
    Soft Computing, 2022, 26 : 3757 - 3775
  • [26] Active learning of causal structures with deep reinforcement learning
    Amirinezhad, Amir
    Salehkaleybar, Saber
    Hashemi, Matin
    NEURAL NETWORKS, 2022, 154 : 22 - 30
  • [27] Pittsburgh Learning Classifier Systems for Explainable Reinforcement Learning: Comparing with XCS
    Bishop, Jordan T.
    Gallagher, Marcus
    Browne, Will N.
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 323 - 331
  • [28] Causal Discovery by Graph Attention Reinforcement Learning
    Yang, Dezhi
    Yu, Guoxian
    Wang, Jun
    Yan, Zhongmin
    Guo, Maozu
    PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 28 - 36
  • [29] Causal Reinforcement Learning for Knowledge Graph Reasoning
    Li, Dezhi
    Lu, Yunjun
    Wu, Jianping
    Zhou, Wenlu
    Zeng, Guangjun
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [30] Reinforcement Causal Structure Learning on Order Graph
    Yang, Dezhi
    Yu, Guoxian
    Wang, Jun
    Wu, Zhengtian
    Guo, Maozu
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 9, 2023, : 10737 - 10744