Modal parameter estimation of a small scale model of an offshore platform: A comparison of two different algorithms

被引:0
|
作者
Magluta, C [1 ]
Rosa, LFL [1 ]
Roitman, N [1 ]
机构
[1] Fed Univ Rio De Janeiro, Dept Civil Engn, COPPE, Rio De Janeiro, Brazil
来源
关键词
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
A modal parameter estimation algorithm using "Goal Programming", a nonlinear optimization technique, is presented. Some numerical simulations that reproduce complex practical applications were performed and the results estimated through Goal Programming algorithm are compared with those estimated through a classical modal estimation method the Orthogonal Polynomials Method. Experimental tests were carried on a small scale model of a fixed offshore platform and the Frequency Response Functions (FRFs) obtained are analyzed using the Orthogonal Polynomials Method and Goal Programming algorithm. The Modal Assurance Coefficient (MAC) matrix is used to correlate the experimentally estimated mode shapes and the numerical ones, obtained through a finite element code. It is shown that the developed algorithm estimates modal parameters more accurately than the classical method does.
引用
收藏
页码:457 / 469
页数:13
相关论文
共 50 条
  • [21] Comparison of different software programs for the parameter estimation of the Linear Logistic Test Model
    Ihme, Jan Marten
    INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2008, 43 (3-4) : 635 - 635
  • [22] Weibull parameter estimation - a comparison of different methods
    Basumatary, H.
    Sreevalsan, E.
    Sasi, K.
    WIND ENGINEERING, 2005, 29 (03) : 309 - 315
  • [23] Applicability comparison of different algorithms for ambient signal based load model parameter identification
    Wang, Ying
    Lu, Chao
    Zhang, Xinran
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2019, 111 : 382 - 389
  • [24] Comparison of Parameter Estimation Methods Based on Two Additive Biomass Models with Small Samples
    Xiong, Nina
    Qiao, Yue
    Ren, Huiru
    Zhang, Li
    Chen, Rihui
    Wang, Jia
    FORESTS, 2023, 14 (08):
  • [25] Model order determination and noise removal for modal parameter estimation
    Hu, Sau-Lon James
    Bao, Xingxian
    Li, Huajun
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2010, 24 (06) : 1605 - 1620
  • [26] A new method for model order selection and modal parameter estimation
    Lardies, J
    Larbi, N
    IMAC-XVIII: A CONFERENCE ON STRUCTURAL DYNAMICS, VOLS 1 AND 2, PROCEEDINGS, 2000, 4062 : 793 - 799
  • [27] Applied machine learning model comparison: Predicting offshore platform integrity with gradient boosting algorithms and neural networks
    Dyer, Alec S.
    Zaengle, Dakota
    Nelson, Jake R.
    Duran, Rodrigo
    Wenzlick, Madison
    Wingo, Patrick C.
    Bauer, Jennifer R.
    Rose, Kelly
    Romeo, Lucy
    MARINE STRUCTURES, 2022, 83
  • [28] The MLMM modal parameter estimation method: A new feature to maximize modal model robustness
    El-Kafafy, Mahmoud
    Peeters, Bart
    Geluk, Theo
    Guillaume, Patrick
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 120 : 465 - 485
  • [29] Dynamic Dictionary Algorithms for Model Order and Parameter Estimation
    Austin, Christian D.
    Ash, Joshua N.
    Moses, Randolph L.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (20) : 5117 - 5130
  • [30] Model-based neural algorithms for parameter estimation
    Skantze, FP
    INFORMATION SCIENCES, 1998, 104 (1-2) : 107 - 128