Generalized Chebyshev bounds via semidefinite programming

被引:67
|
作者
Vandenberghe, Lieven [1 ]
Boyd, Stephen
Comanor, Katherine
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90024 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] RAND Corp, Santa Monica, CA USA
关键词
semidefinite programming; convex optimization; duality theory; Chebyshev inequalities; moment problems;
D O I
10.1137/S0036144504440543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A sharp lower bound on the probability of a set defined by quadratic inequalities, given the first two moments of the distribution, can be efficiently computed using convex optimization. This result generalizes Chebyshev's inequality for scalar random variables. Two semidefinite programming formulations are presented, with a constructive proof based on convex optimization duality and elementary linear algebra.
引用
收藏
页码:52 / 64
页数:13
相关论文
共 50 条
  • [21] BOUNDS FOR PROJECTIVE CODES FROM SEMIDEFINITE PROGRAMMING
    Bachoc, Christine
    Passuello, Alberto
    Vallentin, Frank
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2013, 7 (02) : 127 - 145
  • [22] ERROR BOUNDS AND SINGULARITY DEGREE IN SEMIDEFINITE PROGRAMMING
    Sremac, Stefan
    Woerdeman, Hugo J.
    Wolkowicz, Henry
    SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (01) : 812 - 836
  • [23] Semidefinite Programming Converse Bounds for Quantum Communication
    Wang, Xin
    Fang, Kun
    Duan, Runyao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (04) : 2583 - 2592
  • [24] NEW AND UPDATED SEMIDEFINITE PROGRAMMING BOUNDS FOR SUBSPACE CODES
    Heinlein, Daniel
    Ihringer, Ferdinand
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2020, 14 (04) : 613 - 630
  • [25] Certified Roundoff Error Bounds Using Semidefinite Programming
    Magron, Victor
    Constantinides, George
    Donaldson, Alastair
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2017, 43 (04):
  • [26] RIGOROUS ERROR BOUNDS FOR THE OPTIMAL VALUE IN SEMIDEFINITE PROGRAMMING
    Jansson, Christian
    Chaykin, Denis
    Keil, Christian
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 46 (01) : 180 - 200
  • [27] Semidefinite Programming Bounds For Constant-Weight Codes
    Polak, Sven C.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (01) : 28 - 38
  • [28] Semidefinite programming and eigenvalue bounds for the graph partition problem
    van Dam, Edwin R.
    Sotirov, Renata
    MATHEMATICAL PROGRAMMING, 2015, 151 (02) : 379 - 404
  • [29] Semidefinite programming and eigenvalue bounds for the graph partition problem
    Edwin R. van Dam
    Renata Sotirov
    Mathematical Programming, 2015, 151 : 379 - 404
  • [30] Semidefinite Programming Strong Converse Bounds for Classical Capacity
    Wang, Xin
    Xie, Wei
    Duan, Runyao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (01) : 640 - 653