Generalized Chebyshev bounds via semidefinite programming

被引:65
|
作者
Vandenberghe, Lieven [1 ]
Boyd, Stephen
Comanor, Katherine
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90024 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] RAND Corp, Santa Monica, CA USA
关键词
semidefinite programming; convex optimization; duality theory; Chebyshev inequalities; moment problems;
D O I
10.1137/S0036144504440543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A sharp lower bound on the probability of a set defined by quadratic inequalities, given the first two moments of the distribution, can be efficiently computed using convex optimization. This result generalizes Chebyshev's inequality for scalar random variables. Two semidefinite programming formulations are presented, with a constructive proof based on convex optimization duality and elementary linear algebra.
引用
收藏
页码:52 / 64
页数:13
相关论文
共 50 条
  • [1] Bounds for codes via semidefinite programming
    Musin, Oleg R.
    [J]. 2009 INFORMATION THEORY AND APPLICATIONS WORKSHOP, 2009, : 234 - 236
  • [2] Bounds on localizable information via semidefinite programming
    Synak-Radtke, B
    Horodecki, K
    Horodecki, M
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (08)
  • [3] Option pricing bounds via semidefinite programming
    Primbs, James A.
    [J]. 2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 1266 - 1271
  • [4] Generalized Gauss inequalities via semidefinite programming
    Bart P. G. Van Parys
    Paul J. Goulart
    Daniel Kuhn
    [J]. Mathematical Programming, 2016, 156 : 271 - 302
  • [5] Generalized Gauss inequalities via semidefinite programming
    Van Parys, Bart P. G.
    Goulart, Paul J.
    Kuhn, Daniel
    [J]. MATHEMATICAL PROGRAMMING, 2016, 156 (1-2) : 271 - 302
  • [6] Bounds for codes by semidefinite programming
    Musin, O. R.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2008, 263 (01) : 134 - 149
  • [7] Bounds for codes by semidefinite programming
    O. R. Musin
    [J]. Proceedings of the Steklov Institute of Mathematics, 2008, 263 : 134 - 149
  • [8] Positive Semidefinite Generalized Diffusion Tensor Imaging via Quadratic Semidefinite Programming
    Chen, Yannan
    Dai, Yuhong
    Han, Deren
    Sun, Wenyu
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (03): : 1531 - 1552
  • [9] Strengthened semidefinite programming bounds for codes
    Monique Laurent
    [J]. Mathematical Programming, 2007, 109 : 239 - 261
  • [10] Computable error bounds for semidefinite programming
    [J]. J of Global Optim, 2 (105-115):