Computing under-ice discharge: A proof-of-concept using hydroacoustics and the Probability Concept

被引:6
|
作者
Fulton, John W. [1 ]
Henneberg, Mark F. [1 ]
Mills, Taylor J. [2 ,3 ]
Kohn, Michael S. [1 ]
Epstein, Brian [4 ,5 ]
Hittle, Elizabeth A. [6 ]
Damschen, William C. [7 ]
Laveau, Christopher D. [8 ]
Lambrecht, Jason M. [9 ]
Farmer, William H. [10 ]
机构
[1] US Geol Survey, Colorado Water Sci Ctr, Denver Fed Ctr, Bldg 810,Entrance E-11,MS 415, Denver, CO 80225 USA
[2] NCAR Res Applicat Lab, 3090 Ctr Green Dr, Boulder, CO 80301 USA
[3] US Geol Survey, Colorado Water Sci Ctr, Box 25046, Denver, CO 80225 USA
[4] Hydrol Solut LLC, Sao Paulo, Brazil
[5] Colorado Water Conservat Board, 1313 Sherman St,Room 718, Denver, CO 80203 USA
[6] US Geol Survey, Penn Water Sci Ctr, 439 Hepburn St, Williamsport, PA 17701 USA
[7] US Geol Survey, North Dakota Water Sci Ctr, 821 E Interstate Ave,LK Property Bldg, Bismarck, ND 58503 USA
[8] US Geol Survey, North Dakota Water Sci Ctr, Ronald N Davies Fed Bldg,102 N 4th St, Grand Forks, ND 58203 USA
[9] US Geol Survey, Nebraska Water Sci Ctr, 5231 South 19th St, Lincoln, NE 68512 USA
[10] US Geol Survey, Water Mission Area, Denver Fed Ctr, Box 25046,MS 410, Denver, CO 80225 USA
关键词
Under-ice discharge; Hydroacoustics; Probability Concept; Streamflow; Information entropy; VELOCITY DISTRIBUTION;
D O I
10.1016/j.jhydrol.2018.04.073
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Under-ice discharge is estimated using open-water reference hydrographs; however, the ratings for ice-affected sites are generally qualified as poor. The U.S. Geological Survey (USGS), in collaboration with the Colorado Water Conservation Board, conducted a proof-of-concept to develop an alternative method for computing under-ice discharge using hydroacoustics and the Probability Concept. The study site was located south of Minturn, Colorado (CO), USA, and was selected because of (1) its proximity to the existing USGS streamgage 09064600 Eagle River near Minturn, CO, and (2) its ease-of-access to verify discharge using a variety of conventional methods. From late September 2014 to early March 2015, hydraulic conditions varied from open water to under ice. These temporal changes led to variations in water depth and velocity. Hydroacoustics (tethered and uplooking acoustic Doppler current profilers and acoustic Doppler velocimeters) were deployed to measure the vertical-velocity profile at a singularly important vertical of the channel-cross section. Because the velocity profile was non-standard and cannot be characterized using a Power Law or Log Law, velocity data were analyzed using the Probability Concept, which is a probabilistic formulation of the velocity distribution. The Probability Concept-derived discharge was compared to conventional methods including stage-discharge and index-velocity ratings and concurrent field measurements; each is complicated by the dynamics of ice formation, pressure influences on stage measurements, and variations in cross-sectional area due to ice formation. No particular discharge method was assigned as truth. Rather one statistical metric (Kolmogorov-Smirnov; KS), agreement plots, and concurrent measurements provided a measure of comparability between various methods. Regardless of the method employed, comparisons between each method revealed encouraging results depending on the flow conditions and the absence or presence of ice cover. For example, during lower discharges dominated by under-ice and transition (intermittent open-water and under-ice) conditions, the KS metric suggests there is not sufficient information to reject the null hypothesis and implies that the Probability Concept and index-velocity rating represent similar distributions. During high-flow, open-water conditions, the comparisons are less definitive; therefore, it is important that the appropriate analytical method and instrumentation be selected. Six conventional discharge measurements were collected concurrently with Probability Concept-derived discharges with percent differences (%) of -9.0%, -21%, -8.6%, 17.8%, 3.6%, and -2.3%. This proof-of-concept demonstrates that riverine discharges can be computed using the Probability Concept for a range of hydraulic extremes (variations in discharge, open-water and under-ice conditions) immediately after the siting phase is complete, which typically requires one day. Computing real-time discharges is particularly important at sites, where (1) new streamgages are planned, (2) river hydraulics are complex, and (3) shifts in the stage-discharge rating are needed to correct the streamflow record. Use of the Probability Concept does not preclude the need to maintain a stage-area relation. Both the Probability Concept and index-velocity rating offer water-resource managers and decision makers alternatives for computing real-time discharge for open-water and under-ice conditions.
引用
收藏
页码:733 / 748
页数:16
相关论文
共 50 条
  • [21] Bayesian Design of Proof-of-Concept Trials
    Roland Fisch
    Ieuan Jones
    Julie Jones
    Jouni Kerman
    Gerd Karl Rosenkranz
    Heinz Schmidli
    Therapeutic Innovation & Regulatory Science, 2015, 49 : 155 - 162
  • [22] Opus Framework: A Proof-of-Concept Implementation
    Haddar, Nahla
    Tmar, Mohamed
    Gargouri, Faiez
    2015 IEEE/ACIS 14TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS), 2015, : 639 - 641
  • [23] CANTOS A Gigantic Proof-of-Concept Trial
    Ibanez, Borja
    Fuster, Valentin
    CIRCULATION RESEARCH, 2017, 121 (12) : 1320 - 1322
  • [24] POWERBRIDGENY: A CLEANTECH PROOF-OF-CONCEPT CENTER
    Becker, Kurt H.
    Herskowitz, Orin
    Kotch, Micah J.
    Wheeler, Emily
    Aloise, James
    Byrd, Julia
    Peterson, Jeffrey M.
    TECHNOLOGY AND INNOVATION, 2014, 16 (3-4) : 215 - 222
  • [25] A PROOF-OF-CONCEPT STUDY OF A MAGNETORHEOLOGICAL MICROPUMP
    Cesmeci, Sevki
    Hassan, Rubayet
    Thompson, Mark
    PROCEEDINGS OF ASME 2022 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2022, VOL 2B, 2022,
  • [26] Stopping antiretrovirals: A proof-of-concept trial
    Toma, E
    AIDS RESEARCH AND HUMAN RETROVIRUSES, 1999, 15 (18) : 1608 - 1608
  • [27] Nonconvulsive Electrotherapy: A Proof-of-concept Trial
    Regenold, William T.
    Noorani, Robert J.
    Piez, Deborah
    Patel, Palak
    BIOLOGICAL PSYCHIATRY, 2014, 75 (09) : 46S - 47S
  • [28] A proof-of-concept optical tripwire detector
    McFee, JE
    Achal, S
    Ivanco, T
    Tam, A
    Baker, G
    Anger, C
    DETECTION AND REMEDIATION TECHNOLOGIES FOR MINES AND MINELIKE TARGETS IX, PTS 1 AND 2, 2004, 5415 : 722 - 733
  • [29] Inhaled insulin: A proof-of-concept study
    Cefalu, WT
    ANNALS OF INTERNAL MEDICINE, 2001, 134 (09) : 795 - 795
  • [30] PREVAIL: Proof-of-concept system and results
    Pfeiffer, HC
    MICROELECTRONIC ENGINEERING, 2000, 53 (1-4) : 61 - 66