The Classical Hom-Leibniz Yang-Baxter Equation and Hom-Leibniz Bialgebras

被引:0
|
作者
Guo, Shuangjian [1 ]
Wang, Shengxiang [2 ]
Zhang, Xiaohui [3 ]
机构
[1] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Peoples R China
[2] Chuzhou Univ, Sch Math & Finance, Chuzhou 239000, Peoples R China
[3] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
关键词
Hom-Leibniz bialgebra; Manin triple; relative Rota-Baxter operator; classical Hom-Leibniz Yang-Baxter equation; LIE-ALGEBRAS;
D O I
10.3390/math10111920
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first introduce the notion of Hom-Leibniz bialgebras, which is equivalent to matched pairs of Hom-Leibniz algebras and Manin triples of Hom-Leibniz algebras. Additionally, we extend the notion of relative Rota-Baxter operators to Hom-Leibniz algebras and prove that there is a Hom-pre-Leibniz algebra structure on Hom-Leibniz algebras that have a relative Rota-Baxter operator. Finally, we study the classical Hom-Leibniz Yang-Baxter equation on Hom-Leibniz algebras and present its connection with the relative Rota-Baxter operator.
引用
收藏
页数:15
相关论文
共 50 条