Oscillations, fluctuation intensity and optimal harvesting of a bio-economic model in a complex habitat

被引:3
|
作者
Zhang, Xue [1 ,2 ]
Song, Shuni [1 ]
Wu, Jianhong [2 ]
机构
[1] Northeastern Univ, Coll Sci, Shenyang 110819, Liaoning, Peoples R China
[2] York Univ, York Inst Hlth Res, Ctr Dis Modelling, 4700 Keele St, Toronto, ON M3J 1P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Hopf bifurcation; Habitat complexity; Time delays; Stochastic behavior; Optimal harvesting; PREDATOR-PREY SYSTEM; HOPF-BIFURCATION; BEHAVIOR; STABILITY; CHOICE;
D O I
10.1016/j.jmaa.2015.11.068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the effects of habitat complexity and multi-time delays on dynamics of a bio-economic predator prey model. The differential algebraic system theory is applied to transform the bio-economic model into a normal form, so that the local stability and existence of periodic solutions can be examined by varying the delays and the habitat complexity parameter. The direction of Hopf bifurcation and the stability of bifurcated periodic solutions are investigated. We also discuss the effect of fluctuating environment on dynamical behavior of a corresponding stochastic delayed-differential algebraic system and derive expressions for intensities of population fluctuations. The model is also used to study the optimal harvesting strategy in order to maximize economic profit while sustaining the ecosystem. Numerical simulations are designed to illustrate the effectiveness of theoretical analysis. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:692 / 717
页数:26
相关论文
共 50 条
  • [21] A Bio-Economic Model of Community Incentives for Wildlife Management Under CAMPFIRE
    Fischer, Carolyn
    Muchapondwa, Edwin
    Sterner, Thomas
    ENVIRONMENTAL & RESOURCE ECONOMICS, 2011, 48 (02): : 303 - 319
  • [22] Optimizing land management for nitrogen reduction: A bio-economic spatial model
    Levers, L. R.
    Dalzell, B. J.
    Peterson, J. M.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2025, 377
  • [23] Bio-economic Modelling as a Method for Determining Economic Weights for Optimal Multiple-Trait Tree Selection
    Ivkovic, M.
    Wu, H.
    Kumar, S.
    SILVAE GENETICA, 2010, 59 (2-3) : 77 - 90
  • [24] Necessary Optimality Conditions for Fractional Bio-economic Systems: The Problem of Optimal Harvest Rate
    Filatova, D. V.
    Grzywaczewski, M.
    HUMAN-COMPUTER SYSTEMS INTERACTION: BACKGROUNDS AND APPLICATIONS, 2009, 60 : 557 - +
  • [25] A dynamic bio-economic model to simulate optimal adjustments of suckler cow farm management to production and market shocks in France
    Mosnier, C.
    Agabriel, J.
    Lherm, M.
    Reynaud, A.
    AGRICULTURAL SYSTEMS, 2009, 102 (1-3) : 77 - 88
  • [26] A bio-economic model for calculating economic values of traits for intensive and extensive beef cattle breeds
    Aby, B. A.
    Aass, L.
    Sehested, E.
    Vangen, O.
    LIVESTOCK SCIENCE, 2012, 143 (2-3) : 259 - 269
  • [27] FLBEIA: A simulation model to conduct Bio-Economic evaluation of fisheries management strategies
    Garcia, Dorleta
    Sanchez, Sonia
    Prellezo, Raul
    Urtizberea, Agurtzane
    Andres, Marga
    SOFTWAREX, 2017, 6 : 141 - 147
  • [28] FARManalytics - A bio-economic model to optimize the economic value of sustainable soil management on arable farms
    Kik, M. C.
    Claassen, G. D. H.
    Ros, G. H.
    Meuwissen, M. P. M.
    Smit, A. B.
    Saatkamp, H. W.
    EUROPEAN JOURNAL OF AGRONOMY, 2024, 157
  • [29] Bio-economic management strategy evaluation of deepwater stocks using the FLBEIA model
    Garcia, Dorleta
    Urtizberea, Agurtzane
    Diez, Guzman
    Gil, Juan
    Marchal, Paul
    AQUATIC LIVING RESOURCES, 2013, 26 (04) : 365 - U3382
  • [30] A bio-economic model for the evaluation of breeds and mating systems in beef production enterprises
    Roughsedge, T
    Amer, PR
    Simm, G
    ANIMAL SCIENCE, 2003, 77 : 403 - 416