Non-parametric permutation test for the discrimination of float glass samples based on LIBS spectra

被引:11
|
作者
McIntee, Erin [1 ,2 ]
Viglino, Emilie [1 ,2 ]
Kumor, Stephanie [1 ,2 ]
Rinke, Caitlin [1 ,2 ]
Ni, Liqiang [3 ]
Sigman, Michael E. [1 ,2 ]
机构
[1] Univ Cent Florida, Dept Chem, Orlando, FL 32816 USA
[2] Univ Cent Florida, Natl Ctr Forens Sci, Orlando, FL 32816 USA
[3] Univ Cent Florida, Dept Stat & Actuarial Sci, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
non-parametric permutation test; laser-induced breakdown spectroscopy (LIBS); glass analysis; INDUCED BREAKDOWN SPECTROSCOPY; ELEMENTAL COMPOSITION MEASUREMENTS; CLASSIFICATION; SPECTROMETRY; FRAGMENTS;
D O I
10.1002/cem.1308
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Laser-induced breakdown spectroscopy (LIBS) coupled with non-parametric permutation based hypothesis testing is demonstrated to have good performance in discriminating float glass samples. This type of pairwise sample comparison is important in manufacturing process quality control, forensic science and other applications where determination of a match probability between two samples is required. Analysis of the pairwise comparisons between multiple LIBS spectra from a single glass sample shows that some assumptions required by parametric methods may not hold in practice, motivating the adoption of a non-parametric permutation test. Without rigid distributional assumptions, the permutation test exhibits excellent discriminating power while holding the actual size of Type I error at the nominal level. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:312 / 319
页数:8
相关论文
共 50 条
  • [41] Non-parametric smoothing of the location model in mixed variable discrimination
    O. Asparoukhov
    W. J. Krzanowski
    [J]. Statistics and Computing, 2000, 10 : 289 - 297
  • [42] Unsupervised Feature Learning via Non-Parametric Instance Discrimination
    Wu, Zhirong
    Xiong, Yuanjun
    Yu, Stella X.
    Lin, Dahua
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 3733 - 3742
  • [43] A new test for the parametric form of the variance function in non-parametric regression
    Dette, Holger
    Neurneyer, Natalie
    Van Keilegorn, Ingrid
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 : 903 - 917
  • [44] Hypothesis testing for two population means: parametric or non-parametric test?
    Tsagris, Michail
    Alenazi, Abdulaziz
    Verrou, Kleio-Maria
    Pandis, Nikolaos
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (02) : 252 - 270
  • [45] A New Non-Parametric Subspace-Based Approach for Unit Root Test
    Farahikia, Mehran
    Yarmohammadi, Masoud
    Hassani, Hossein
    [J]. FLUCTUATION AND NOISE LETTERS, 2019, 18 (01):
  • [46] A non-parametric test for comparing conditional ROC curves
    Fanjul-Hevia, Aris
    Gonzalez-Manteiga, Wenceslao
    Pardo-Fernandez, Juan Carlos
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 157 (157)
  • [47] A non-parametric test for umbrella alternatives based on ranked-set sampling
    Magel, RC
    Qin, L
    [J]. JOURNAL OF APPLIED STATISTICS, 2003, 30 (08) : 925 - 937
  • [48] A Non-parametric Test for Partial Monotonicity in Multiple Regression
    van Beek, Misha
    Daniels, Hennie A. M.
    [J]. COMPUTATIONAL ECONOMICS, 2014, 44 (01) : 87 - 100
  • [49] Non-parametric test of ordered alternatives in incomplete blocks
    Park, E
    Lee, YJ
    [J]. STATISTICS IN MEDICINE, 2000, 19 (10) : 1329 - 1337
  • [50] A fast non-parametric test of association for multiple traits
    Garrido-Martin, Diego
    Calvo, Miquel
    Reverter, Ferran
    Guigo, Roderic
    [J]. GENOME BIOLOGY, 2023, 24 (01)