Divergence Based Online Learning in Vector Quantization

被引:0
|
作者
Villmann, Thomas [1 ]
Haase, Sven [1 ]
Schleif, Frank-Michael [2 ]
Hammer, Barbara [2 ]
机构
[1] Univ Appl Sci Mittweida, Dept Math Nat Sci Informat, Mittweida, Germany
[2] Tech Univ Clausthal, Inst Comp Sci, Zellerfeld, Germany
关键词
vector quantization; divergence based learning; information theory; MAPS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose the utilization of divergences in gradient descent learning of supervised and unsupervised vector quantization as an alternative for the squared Euclidean distance. The approach is based on the determination of the Frechet-derivatives for the divergences, wich can be immediately plugged into the online-learning rules.
引用
收藏
页码:479 / +
页数:3
相关论文
共 50 条
  • [41] Robust vector quantization by competitive learning
    Buhmann, JM
    Hofmann, T
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 139 - 142
  • [42] sklvq: Scikit Learning Vector Quantization
    van Veen, Rick
    Biehl, Michael
    De Vries, Gert-Jan
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [43] Relational Extensions of Learning Vector Quantization
    Hammer, Barbara
    Schleif, Frank-Michael
    Zhu, Xibin
    NEURAL INFORMATION PROCESSING, PT II, 2011, 7063 : 481 - 489
  • [44] Dual Weight Learning Vector Quantization
    Lv, Chuanfeng
    An, Xing
    Liu, Zhiwen
    Zhao, Qiangfu
    ICSP: 2008 9TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-5, PROCEEDINGS, 2008, : 1723 - +
  • [45] Noise Fuzzy Learning Vector Quantization
    Wu, Xiao-Hong
    Wu, Bin
    Zhao, Jie-Wen
    ADVANCED MEASUREMENT AND TEST, PARTS 1 AND 2, 2010, 439-440 : 367 - +
  • [46] Learning algorithms with boosting for Vector Quantization
    Miyajima, Hiromi
    Shigei, Noritaka
    Maeda, Michiharu
    Hosoda, Shuji
    2008 3RD INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS, CONTROL AND SIGNAL PROCESSING, VOLS 1-3, 2008, : 352 - 356
  • [47] sklvq: Scikit learning vector quantization
    van Veen, Rick
    Biehl, Michael
    de Vries, Gert-Jan
    2021, Microtome Publishing (22)
  • [48] Expansive and competitive learning for vector quantization
    Muñoz-Perez, J
    Gomez-Ruiz, JA
    Lopez-Rubio, E
    Garcia-Bernal, MA
    NEURAL PROCESSING LETTERS, 2002, 15 (03) : 261 - 273
  • [49] A review of learning vector quantization classifiers
    Nova, David
    Estevez, Pablo A.
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (3-4): : 511 - 524
  • [50] A dynamic approach to learning vector quantization
    De Stefano, C
    D'Elia, C
    Marcelli, A
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 4, 2004, : 601 - 604