Steep slope carbon nanotube tunneling field-effect transistor

被引:12
|
作者
Pang, Chin-Sheng [1 ,2 ]
Han, Shu-Jen [3 ]
Chen, Zhihong [1 ,2 ]
机构
[1] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Elect & Comp Engn, W Lafayette, IN 47907 USA
[3] HFC Semicond Corp, 17 Comp Dr West, Albany, NY 12205 USA
关键词
MOSFETs; Tunneling field-effect transistor (TFET); Thin gate dielectric; Carbon nanotube (CNT); PERFORMANCE; MOSFET; BULK;
D O I
10.1016/j.carbon.2021.03.068
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tunneling field-effect transistors (TFETs) have emerged as a potential candidate to outperform conventional metal-oxide-semiconductor FETs at low voltages, since their operation mechanism can overcome the fundamental subthreshold swing (SS) limit of 60 mV/decade at room temperature. We report carbon nanotube (CNT) based TFETs with abrupt p-i-n tunneling junctions controlled by electrostatic doping. Minimum SS (SSmin) of similar to 41 mV/dec is observed with nearly no temperature dependence, as clear evidence of the TFET operation. We further investigate devices using CNTs with smaller bandgaps, reporting a record high band-to-band tunneling (BTBT) current of similar to 100 nA for a single CNT. Non-linear output characteristics are observed as expected for devices operating outside of the quantum capacitance limit (QCL). Overall, electrostatically doped CNT TFETs shine a promising path for low-power electronic applications. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:237 / 243
页数:7
相关论文
共 50 条
  • [21] Calibration method for a carbon nanotube field-effect transistor biosensor
    Abe, Masuhiro
    Murata, Katsuyuki
    Ataka, Tatsuaki
    Matsumoto, Kazuhiko
    NANOTECHNOLOGY, 2008, 19 (04)
  • [22] DNA-templated carbon nanotube field-effect transistor
    Keren, K
    Berman, RS
    Buchstab, E
    Sivan, U
    Braun, E
    SCIENCE, 2003, 302 (5649) : 1380 - 1382
  • [23] Nanomanipulation of a Single Carbon Nanotube for the Fabrication of a Field-effect Transistor
    Yu, Ning
    Shi, Qing
    Nakajima, Masahiro
    Wang, Huaping
    Yang, Zhan
    Huang, Qiang
    Fukuda, Toshio
    2017 IEEE 17TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2017, : 818 - 821
  • [24] Fabrication and Characterization of Carbon Nanotube Field-Effect Transistor Biosensors
    Leyden, Matthew R.
    Schuman, Canan
    Sharf, Tal
    Kevek, Josh
    Remcho, Vincent T.
    Minot, Ethan D.
    ORGANIC SEMICONDUCTORS IN SENSORS AND BIOELECTRONICS III, 2010, 7779
  • [25] Modeling of carbon nanotube field-effect transistor with nanowelding treatment
    Zhang, Wei
    Chen, Changxin
    Zhang, Yafei
    MICROELECTRONICS JOURNAL, 2009, 40 (12) : 1681 - 1685
  • [26] A small signal model for Carbon Nanotube Field-Effect Transistor
    Zhang, Yuming
    Yang, Tao
    Yang, Yang
    Xia, Lei
    Xu, Ruimin
    2018 ASIA-PACIFIC MICROWAVE CONFERENCE PROCEEDINGS (APMC), 2018, : 366 - 368
  • [27] Carbon nanotube field-effect transistor based pH sensors
    Wang, Kemin
    Liu, Xiaofeng
    Zhao, Zijun
    Li, Luyao
    Shang, Qian
    Liu, Yiwei
    Zhang, Zhiyong
    CARBON, 2023, 205 : 540 - 545
  • [28] Carbon nanotube field-effect transistor operation at microwave frequencies
    Pesetski, AA
    Baumgardner, JE
    Folk, E
    Przybysz, JX
    Adam, JD
    Zhang, H
    APPLIED PHYSICS LETTERS, 2006, 88 (11)
  • [29] Steep Slope Silicon-On-Insulator Feedback Field-Effect Transistor: Design and Performance Analysis
    Lee, Changhoon
    Ko, Eunah
    Shin, Changhwan
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2019, 66 (01) : 286 - 291
  • [30] The use of a Gaussian doping distribution in the channel region to improve the performance of a tunneling carbon nanotube field-effect transistor
    Naderi, Ali
    Ghodrati, Maryam
    Baniardalani, Sobhi
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2020, 19 (01) : 283 - 290