Dynamic Resource Allocation in Systems-of-Systems Using a Heuristic-Based Interpretable Deep Reinforcement Learning

被引:1
|
作者
Chen, Qiliang [1 ]
Heydari, Babak [2 ]
机构
[1] Northeastern Univ, Dept Mech & Ind Engn, MultiAGent Intelligent Complex Syst MAGICS Lab, Boston, MA 02115 USA
[2] Northeastern Univ, Inst Experiential AI, Dept Mech & Ind Engn, MultiAGent Intelligent Complex Syst MAGICS Lab, Boston, MA 02115 USA
关键词
artificial intelligence; machine learning; systems design; systems engineering; reinforcement learning; interpretable AI; resource allocation; SOCIOTECHNICAL SYSTEMS; RADIO; DESIGN; GAME;
D O I
10.1115/1.4055057
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Systems-of-systems (SoS) often include multiple agents that interact in both cooperative and competitive modes. Moreover, they involve multiple resources, including energy, information, and bandwidth. If these resources are limited, agents need to decide how to share resources cooperatively to reach the system-level goal, while performing the tasks assigned to them autonomously. This paper takes a step toward addressing these challenges by proposing a dynamic two-tier learning framework, based on deep reinforcement learning that enables dynamic resource allocation while acknowledging the autonomy of systems constituents. The two-tier learning framework that decouples the learning process of the SoS constituents from that of the resource manager ensures that the autonomy and learning of the SoS constituents are not compromised as a result of interventions executed by the resource manager. We apply the proposed two-tier learning framework on a customized OpenAI Gym environment and compare the results of the proposed framework to baseline methods of resource allocation to show the superior performance of the two-tier learning scheme across a different set of SoS key parameters. We then use the results of this experiment and apply our heuristic inference method to interpret the decisions of the resource manager for a range of environment and agent parameters.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A Deep Reinforcement Learning-Based Framework for Dynamic Resource Allocation in Multibeam Satellite Systems
    Hu, Xin
    Liu, Shuaijun
    Chen, Rong
    Wang, Weidong
    Wang, Chunting
    IEEE COMMUNICATIONS LETTERS, 2018, 22 (08) : 1612 - 1615
  • [2] Quantum Deep Reinforcement Learning for Dynamic Resource Allocation in Mobile Edge Computing-Based IoT Systems
    Ansere, James Adu
    Gyamfi, Eric
    Sharma, Vishal
    Shin, Hyundong
    Dobre, Octavia A.
    Duong, Trung Q.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (06) : 6221 - 6233
  • [3] Deep Reinforcement Learning Based Dynamic Channel Allocation Algorithm in Multibeam Satellite Systems
    Liu, Shuaijun
    Hu, Xin
    Wang, Weidong
    IEEE ACCESS, 2018, 6 : 15733 - 15742
  • [4] Enhancing Dynamic Production Scheduling and Resource Allocation Through Adaptive Control Systems with Deep Reinforcement Learning
    Aderoba, Olugbenga Adegbemisola
    Mpofu, Kluunbu Ani
    Adenuga, Olukorede Tijani
    Nzengue, Alliance Gracia Bibili
    PROCEEDINGS OF THE CONFERENCE ON PRODUCTION SYSTEMS AND LOGISTICS, CPSL 2024, 2024, : 814 - 827
  • [5] Deep Reinforcement Learning for Optimal Resource Allocation in Blockchain-based IoV Secure Systems
    Xiao, Hongzhi
    Qiu, Chen
    Yang, Qinglin
    Huang, Huakun
    Wang, Junbo
    Su, Chunhua
    2020 16TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING (MSN 2020), 2020, : 137 - 144
  • [6] A Deep Reinforcement Learning based Resource Allocation Method for Urban Rail Transit Cloud Systems
    Li, Ziheng
    Zhu, Li
    Li, Yang
    Liang, Hao
    Wang, Hao
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 3922 - 3926
  • [7] Deep transfer reinforcement learning for resource allocation in hybrid multiple access systems
    Wang, Xiaoming
    Zhang, Yijian
    Wu, Huiling
    Liu, Ting
    Xu, Youyun
    PHYSICAL COMMUNICATION, 2022, 55
  • [8] Deep Reinforcement Learning based Dynamic Resource Allocation Method for NOMA in AeroMACS
    Yu, Lanchenhui
    Zhao, Jingjing
    Zhu, Yanbo
    Chen, RunZe
    Cai, Kaiquan
    2024 INTEGRATED COMMUNICATIONS, NAVIGATION AND SURVEILLANCE CONFERENCE, ICNS, 2024,
  • [9] Dynamic Resource Allocation for Metaverse Applications with Deep Reinforcement Learning
    Chu, Nam H.
    Nguyen, Diep N.
    Hoang, Dinh Thai
    Phan, Khoa T.
    Dutkiewicz, Eryk
    Niyato, Dusit
    Shu, Tao
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [10] Dynamic Resource Allocation in Network Slicing with Deep Reinforcement Learning
    Cai, Yue
    Cheng, Peng
    Chen, Zhuo
    Xiang, Wei
    Vucetic, Branka
    Li, Yonghui
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 2955 - 2960