A low cost paper tissue-based PDMS/SiO2 composite for both high efficient oil absorption and water-in-oil emulsion separation

被引:33
|
作者
Sun, Jiawei [1 ,4 ]
Bi, Hengchang [1 ,2 ]
Jia, Haiyang [1 ]
Su, Shi [1 ]
Dong, Hui [1 ]
Xie, Xiao [1 ,2 ]
Sun, Litao [1 ,2 ,3 ]
机构
[1] Southeast Univ, Minist Educ, Key Lab MEMS, SEU FEI Nanopico Ctr, Nanjing 210096, Jiangsu, Peoples R China
[2] Jiangnan Graphene Res Inst, Changzhou 213149, Peoples R China
[3] Southeast Univ & Monash Univ Suzhou, Joint Res Inst, Ctr Adv Mat & Manufacture, Suzhou 215123, Peoples R China
[4] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94708 USA
基金
中国国家自然科学基金; 美国国家科学基金会; 中国博士后科学基金;
关键词
Paper tissue-based; Superhydrophobic; Oil absorption; Emulsion separation; High flux; OIL/WATER SEPARATION; REMOVAL; MEMBRANES; LAYER; PURIFICATION; GRAPHENE; MESH; CONTAMINANTS; HYDROGEL; BEHAVIOR;
D O I
10.1016/j.jclepro.2019.118814
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The pollution of water resource and shortage of clean water have become increasingly severe, developing an urgent demand of reliable, efficient yet low-cost material for everyday water purification. In the present work, a superhydrophobic paper tissue-based SiO2/PDMS composite has been prepared for both oil absorption and water-in-oil emulsion separation. The fabrication process is quite simple since it takes the full advantage of tissue that has naturally strong capillary force of which allows the material to absorb oil from water much more rapidly and completely (>99.9%) even under harsh conditions. The study has shown the novel material is exceptionally efficient in separating water-in-oil emulsion under gravity but no need of extraneous pressure. A variety of emulsions has been proven with high flux (>2,000 L m(-2) h(-1)) and high separation efficiency (>99.4%). It is believed that this study has proposed a highly reliable and efficient, low cost strategy in both oil absorption and water purification, which shed light on water treatment of both civil use and industry. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Recycled waste masks as oil absorbent based on stable SiO2 coating for efficient separation of oil-water mixtures and oil-in-water emulsions
    Ning, Lianchao
    Liu, Yi
    Man, Shuang
    Han, Yaxin
    Zhang, Longfei
    Ling, Honglei
    Zhang, Ming
    JOURNAL OF WATER PROCESS ENGINEERING, 2023, 56
  • [22] High flux composite membranes based on glass/cellulose fibers for efficient oil-water emulsion separation
    Xi, Jianfeng
    Lou, Yanling
    Jiang, Shan
    Dai, Hongqi
    Yang, Pei
    Zhou, Xiaoyan
    Fang, Guigan
    Wu, Weibing
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 647
  • [23] High flux composite membranes based on glass/cellulose fibers for efficient oil-water emulsion separation
    Xi, Jianfeng
    Lou, Yanling
    Jiang, Shan
    Dai, Hongqi
    Yang, Pei
    Zhou, Xiaoyan
    Fang, Guigan
    Wu, Weibing
    Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647
  • [24] β-SiAlON ceramic membranes modified with SiO2 nanoparticles with high rejection rate in oil-water emulsion separation
    Zhang, Dong-Shuai
    Abadikhah, Hamidreza
    Wang, Jun-Wei
    Hao, Lu-Yuan
    Xu, Xin
    Agathopoulos, Simeon
    CERAMICS INTERNATIONAL, 2019, 45 (04) : 4237 - 4242
  • [25] Lotus leaf-like SiO2 nanofiber coating on polyvinylidene fluoride nanofiber membrane for water-in-oil emulsion separation and antifouling enhancement
    Liang, Yejin
    Yang, Eunmok
    Kim, Minbeom
    Kim, Soyoung
    Kim, Hyeonseo
    Byun, Jaehyun
    Yanar, Numan
    Choi, Heechul
    CHEMICAL ENGINEERING JOURNAL, 2023, 452
  • [26] Fabrication of TiO2/SiO2 superhydrophobic coating for efficient oil/water separation
    Xu, Pan
    Li, Xinxue
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (04):
  • [27] Improvement strategies for oil/water separation based on electrospun SiO2 nanofibers
    Xing, Wei
    Wang, Yanxin
    Mao, Xinhui
    Gao, Zhiyuan
    Yan, Xianhang
    Yuan, Yanru
    Huang, Linjun
    Tang, Jianguo
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 653 : 1600 - 1619
  • [28] Superhydrophilic and Oil-Resistant SiO2/PU Fiber Membrane for Oil-In-Water Emulsion Separation under Gravity
    Gao, Li
    Gu, Haihong
    Wang, Chunxia
    Wu, Huanling
    Ye, Chao
    FIBERS AND POLYMERS, 2024, 25 (05) : 1623 - 1634
  • [29] Superhydrophilic and Oil-Resistant SiO2/PU Fiber Membrane for Oil-In-Water Emulsion Separation under Gravity
    Li Gao
    Haihong Gu
    Chunxia Wang
    Huanling Wu
    Chao Ye
    Fibers and Polymers, 2024, 25 : 1623 - 1634
  • [30] A novel Cu(OH)2 coated filter paper with superhydrophobicity for the efficient separation of water-in-oil emulsions
    Cao, Chenyang
    Cheng, Jiang
    MATERIALS LETTERS, 2018, 217 : 5 - 8