Fast and efficient CRISPR-mediated genome editing in Aureobasidium using Cas9 ribonucleoproteins

被引:3
|
作者
Kreuter, Johanna [1 ]
Stark, Georg [1 ]
Mach, Robert L. [1 ]
Mach-Aigner, Astrid R. [1 ]
Zimmermann, Christian [1 ]
机构
[1] TU Wien, Inst Chem Environm & Biosci Engn, Gumpendorfer Str 1a, A-1060 Vienna, Austria
基金
奥地利科学基金会;
关键词
Aureobasidium; CRISPR; Genome editing; Transformation; PULLULANS; POLYSACCHARIDE; BIOCONTROL; EVOLUTION; DELIVERY; YEASTS; FUNGI;
D O I
10.1016/j.jbiotec.2022.03.017
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Species of the genus Aureobasidium are ubiquitous, polyextremotolerant, "yeast-like " ascomycetes used for the industrial production of pullulan and other products and as biocontrol agents in agriculture. Their application potential and wide-spread occurrence make Aureobasidium spp. interesting study objects. The availability of a fast and efficient genome editing method is an obvious advantage for future basic and applied research on Aureobasidium. In this study, we describe the development of a CRISPR/Cas9-based genome editing method using ribonucleoproteins (RNPs) in A. pullulans and A. melanogenum. We demonstrate that this method can be used for single and multiplex genome editing using only RNPs by targeting URA3 (encoding for orotidine-5 & PRIME;-phosphate decarboxylase), ADE2 (encoding for phosphoribosylaminoimidazole carboxylase) and ARG4 (encoding for argininosuccinate lyase). We demonstrate the applicability of Trichoderma reesei pyr4 and Aspergillus fumigatus pyrG to complement the URA3 deficiency. Further, we show that using RNPs improves the homologous recombination rate and 20 bp long homologous flanks are sufficient. Therefore, the repair cassettes can be constructed by a single PCR, abolishing the need for laborious and time-consuming cloning, which is necessary for previously described methods for CRISPR-mediated genome editing in these fungi. The here presented method allows fast and efficient genome editing for gene deletions, modifications, and insertions in Auresobasidium with a minimized risk of off-target effects.
引用
收藏
页码:11 / 16
页数:6
相关论文
共 50 条
  • [31] CRISPR/Cas9 genome editing in wheat
    Kim, Dongjin
    Alptekin, Burcu
    Budak, Hikmet
    FUNCTIONAL & INTEGRATIVE GENOMICS, 2018, 18 (01) : 31 - 41
  • [32] CRISPR/Cas9 in Genome Editing and Beyond
    Wang, Haifeng
    La Russa, Marie
    Qi, Lei S.
    ANNUAL REVIEW OF BIOCHEMISTRY, VOL 85, 2016, 85 : 227 - 264
  • [33] CRISPR/Cas9 genome editing in crops
    Smedley, Mark
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2018, 54 : S104 - S104
  • [34] Genome editing of Clostridium autoethanogenum using CRISPR/Cas9
    Nagaraju, Shilpa
    Davies, Naomi Kathleen
    Walker, David Jeffrey Fraser
    Kopke, Michael
    Simpson, Sean Dennis
    BIOTECHNOLOGY FOR BIOFUELS, 2016, 9
  • [35] Recent Advances in Genome Editing Using CRISPR/Cas9
    Ding, Yuduan
    Li, Hong
    Chen, Ling-Ling
    Xie, Kabin
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [36] Treatment of Dyslipidemia Using CRISPR/Cas9 Genome Editing
    Alexandra C. Chadwick
    Kiran Musunuru
    Current Atherosclerosis Reports, 2017, 19
  • [37] Genome editing of Clostridium autoethanogenum using CRISPR/Cas9
    Shilpa Nagaraju
    Naomi Kathleen Davies
    David Jeffrey Fraser Walker
    Michael Köpke
    Séan Dennis Simpson
    Biotechnology for Biofuels, 9
  • [38] Editing the genome of Aphanomyces invadans using CRISPR/Cas9
    Muhammad Majeed
    Hatem Soliman
    Gokhlesh Kumar
    Mansour El-Matbouli
    Mona Saleh
    Parasites & Vectors, 11
  • [39] Editing the genome of Aphanomyces invadans using CRISPR/Cas9
    Majeed, Muhammad
    Soliman, Hatem
    Kumar, Gokhlesh
    El-Matbouli, Mansour
    Saleh, Mona
    PARASITES & VECTORS, 2018, 11
  • [40] Treatment of Dyslipidemia Using CRISPR/Cas9 Genome Editing
    Chadwick, Alexandra C.
    Musunuru, Kiran
    CURRENT ATHEROSCLEROSIS REPORTS, 2017, 19 (07)