Exact solution of a reaction-diffusion model with particle-number conservation

被引:0
|
作者
Jafarpour, FH [1 ]
Masharian, SR
机构
[1] Bu Ali Sina Univ, Dept Phys, Hamadan, Iran
[2] Inst Studies Theoret Phys & Math, Tehran, Iran
来源
PHYSICAL REVIEW E | 2004年 / 70卷 / 05期
关键词
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We analytically investigate a one-dimensional branching-coalescing model with reflecting boundaries in a canonical ensemble where the total number of particles on the chain is conserved. Exact analytical calculations show that the model has two different phases which are separated by a second-order phase transition. The thermodynamic behavior of the canonical partition function of the model has been calculated exactly in each phase. Density profiles of particles have also been obtained explicitly. It is shown that the exponential part of the density profiles decays on three different length scales which depend on the total density of particles.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Particle-number conservation in static-path approximation for thermal superfluid systems
    Kaneko, K.
    Schiller, A.
    PHYSICAL REVIEW C, 2007, 76 (06):
  • [32] REACTION-DIFFUSION MODEL FOR PHYLLOTAXIS
    BERNASCONI, GP
    PHYSICA D, 1994, 70 (1-2): : 90 - 99
  • [33] A STOCHASTIC REACTION-DIFFUSION MODEL
    KOTELENEZ, P
    LECTURE NOTES IN MATHEMATICS, 1989, 1390 : 132 - 137
  • [34] On multidimensional exact solutions of a nonlinear reaction-diffusion system
    Kosov, A. A.
    Semenov, E. I.
    Tirskikh, V. V.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2023, 33 (02): : 225 - 239
  • [35] Exact Solutions for Pattern Formation in a Reaction-Diffusion System
    Lin, Yezhi
    Liu, Yinping
    Li, Zhibin
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2013, 14 (05) : 307 - 315
  • [36] EXACT AND APPROXIMATE SOLUTIONS OF A DEGENERATE REACTION-DIFFUSION SYSTEM
    Kazakov, A. L.
    Spevak, L. F.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2021, 62 (04) : 673 - 683
  • [37] New exact solutions of nonlinear reaction-diffusion equations
    Cherniha, RM
    REPORTS ON MATHEMATICAL PHYSICS, 1998, 41 (03) : 333 - 349
  • [38] On exact quasistationary solutions to a nonlinear reaction-diffusion equation
    A. F. Ioffe Phys. Tech. Inst. R., St. Petersburg 194021, Russia
    不详
    Phys Lett Sect A Gen At Solid State Phys, 6 (527-536):
  • [39] Exact density profile of a stochastic reaction-diffusion process
    de Oliveira, MJ
    PHYSICAL REVIEW E, 1999, 60 (03): : 2563 - 2567
  • [40] Exact solutions for logistic reaction-diffusion equations in biology
    Broadbridge, P.
    Bradshaw-Hajek, B. H.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (04):