Incorporation of ARMA models into flow forecasting by artificial neural networks

被引:84
|
作者
Cigizoglu, HK [1 ]
机构
[1] Istanbul Tech Univ, Fac Civil Engn, Div Hydraul, TR-80626 Istanbul, Turkey
关键词
training data sets; synthetic flow generation; periodic component;
D O I
10.1002/env.596
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A frequently encountered problem during the application of artificial neural networks (ANNs) to various water resource problems is the limitation of the data sets required for the training stage of ANNs. This prevents ANNs from learning input and output data sets within different ranges, thus decreasing the prediction capability during the testing stage. In this article the well known ARMA models are used to generate synthetic series, and these series are incorporated into the training data sets of ANNs. The method is applied to the monthly mean river flow data of a station in the East Mediterranean region of Turkey. The forecasting accuracy of the future monthly flows carries significance because a water reservoir is planned for the downstream of this station. Because the available data record length is limited studies should be carried out to extend the training data set of ANNs. It is seen that the extension of input and output data sets in the training stage improves the accuracy of forecasting using ANNs. The introduction of periodicity components in the input layer also increases the forecasting accuracy of ANNs. Copyright (C) 2003 John Wiley Sons, Ltd.
引用
收藏
页码:417 / 427
页数:11
相关论文
共 50 条
  • [11] Wind Speed Forecasting Using ARMA and Neural Network Models
    Zaman, Uzair
    Teimourzadeh, Hamid
    Sangani, Elias Hassani
    Liang, Xiaodong
    Chung, Chi Yung
    2021 IEEE ELECTRICAL POWER AND ENERGY CONFERENCE (EPEC), 2021, : 243 - 248
  • [12] Modeling Markov Switching ARMA-GARCH Neural Networks Models and an Application to Forecasting Stock Returns
    Bildirici, Melike
    Ersin, Ozgur
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [13] Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir
    Valipour, Mohammad
    Banihabib, Mohammad Ebrahim
    Behbahani, Seyyed Mahmood Reza
    JOURNAL OF HYDROLOGY, 2013, 476 : 433 - 441
  • [14] ENERGY CONSUMPTION FORECASTING IN TAIWAN BASED ON ARIMA AND ARTIFICIAL NEURAL NETWORKS MODELS
    Feng-Kuang, Chuang
    Chih-Young, Hung
    Kuo, Kuo-Cheng
    Chang, Chi-Ya
    4TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER THEORY AND ENGINEERING ( ICACTE 2011), 2011, : 587 - 590
  • [15] Models of Artificial Neural Networks Applied to Demand Forecasting in Nonconsolidated Tourist Destinations
    Molinet Berenguer, Tomas
    Molinet Berenguer, Jose Antonio
    Betancourt Garcia, Maria Elena
    Palmer Pol, Alfonso
    Montano Moreno, Juan Jose
    METHODOLOGY-EUROPEAN JOURNAL OF RESEARCH METHODS FOR THE BEHAVIORAL AND SOCIAL SCIENCES, 2015, 11 (02) : 35 - 44
  • [16] Artificial Neural Networks for Photovoltaic Power Forecasting: A Review of Five Promising Models
    Asghar, Rafiq
    Fulginei, Francesco Riganti
    Quercio, Michele
    Mahrouch, Assia
    IEEE ACCESS, 2024, 12 : 90461 - 90485
  • [17] A Water Flow Forecasting for Dam using Neural Networks and regression models
    Egawa, T.
    Suzuki, K.
    Ichikawa, Y.
    Iizaka, T.
    Matsui, T.
    Shikagawa, Y.
    2011 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING, 2011,
  • [18] ARTIFICIAL NEURAL NETWORKS-BASED ECONOMETRIC MODELS FOR TOURISM DEMAND FORECASTING
    Folgieri, Raffaella
    Baldigara, Tea
    Mamula, Maja
    4TH INTERNATIONAL SCIENTIFIC CONFERENCE: TOSEE - TOURISM IN SOUTHERN AND EASTERN EUROPE 2017, 2017, 4 : 169 - 182
  • [19] Comparison between Response Surface Models and Artificial Neural Networks in Hydrologic Forecasting
    Yu, Jianjun
    Qin, Xiaosheng
    Larsen, Ole
    Chua, L. H. C.
    JOURNAL OF HYDROLOGIC ENGINEERING, 2014, 19 (03) : 473 - 481
  • [20] A novel hybridization of artificial neural networks and ARIMA models for time series forecasting
    Khashei, Mehdi
    Bijari, Mehdi
    APPLIED SOFT COMPUTING, 2011, 11 (02) : 2664 - 2675