Reactive oxygen intermediates in plant-microbe interactions:: Who is who in powdery mildew resistance?

被引:177
|
作者
Hückelhoven, R [1 ]
Kogel, KH [1 ]
机构
[1] Univ Giessen, Inst Phytopathol & Appl Zool, Interdisciplinary Res Ctr Environm Sci, D-35392 Giessen, Germany
关键词
Blumeria; cell wall strengthening; GTP-binding protein; Hordeum; hypersensitive reaction; oxidative burst;
D O I
10.1007/s00425-003-0973-z
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Reactive oxygen intermediates (ROIs) such as hydrogen peroxide (H2O2) and the superoxide anion radical (O-2(-)) accumulate in many plants during attack by microbial pathogens. Despite a huge number of studies, the complete picture of the role of ROIs in the host-pathogen interaction is not yet fully understood. This situation is reflected by the controversially discussed question as to whether ROIs are key factors in the establishment and maintenance of either host cell inaccessibility or accessibility for fungal pathogens. On the one hand, ROIs have been implicated in signal transduction as well as in the execution of defence reactions such as cell wall strengthening and a rapid host cell death (hypersensitive reaction). On the other hand, ROIs accumulate in compatible interactions, and there are reports suggesting a function of ROIs in restricting the spread of leaf lesions and thus in suppressing cell death. Moreover, in situ analyses have demonstrated that different ROIs may trigger opposite effects in plants depending on their spatiotemporal distribution and subcellular concentrations. This demonstrates the need to determine the particular role of individual ROIs in distinct stages of pathogen development. The well-studied interaction of cereals with fungi from the genus Blumeria is an excellent model system in which signal transduction and defence reactions can be further elucidated in planta. This review article gives a synopsis of the role of ROI accumulation, with particular emphasis on the pathosystem Hordeum vulgare L.-Blumeria graminis.
引用
收藏
页码:891 / 902
页数:12
相关论文
共 50 条
  • [21] The role of water in plant-microbe interactions
    Aung, Kyaw
    Jiang, Yanjuan
    He, Sheng Yang
    PLANT JOURNAL, 2018, 93 (04): : 771 - 780
  • [22] Interkingdom signaling in plant-microbe interactions
    Jinhong Kan
    Rongxiang Fang
    Yantao Jia
    Science China Life Sciences, 2017, 60 : 785 - 796
  • [23] Editorial: Biotrophic Plant-Microbe Interactions
    Spanu, Pietro D.
    Panstruga, Ralph
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [24] Interkingdom signaling in plant-microbe interactions
    Kan, Jinhong
    Fang, Rongxiang
    Jia, Yantao
    SCIENCE CHINA-LIFE SCIENCES, 2017, 60 (08) : 785 - 796
  • [25] Jasmonates - Signals in plant-microbe interactions
    Pozo, MJ
    Van Loon, LC
    Pieterse, CMJ
    JOURNAL OF PLANT GROWTH REGULATION, 2004, 23 (03) : 211 - 222
  • [26] New Horizons in Plant-Microbe Interactions
    Cerny, Martin
    Hyskova, Veronika
    PLANTS-BASEL, 2024, 13 (21):
  • [27] Biotechnology and biodiversity of plant-microbe interactions
    Werner, D
    Neumann-Silkow, F
    Prasad, BN
    Steele, H
    Redecker, D
    Vinuesa, R
    Müller, P
    BIOTECHNOLOGY IN SUSTAINABLE BIODIVERSITY AND FOOD SECURITY, 2003, : 17 - 29
  • [28] Jasmonates—Signals in plant-microbe interactions
    Pozo M.J.
    Van Loon L.C.
    Pieterse C.M.J.
    Journal of Plant Growth Regulation, 2004, 23 (3) : 211 - 222
  • [29] The Age of Coumarins in Plant-Microbe Interactions
    Stringlis, Ioannis A.
    de Jonge, Ronnie
    Pieterse, Corne M. J.
    PLANT AND CELL PHYSIOLOGY, 2019, 60 (07) : 1405 - 1419
  • [30] Jasmonates - Signals in plant-microbe interactions
    Pozo M.J.
    Van Loon L.C.
    Pieterse C.M.J.
    Journal of Plant Growth Regulation, 2004, 23 (3) : 211 - 222