Hyperparameter Tuning for Big Data using Bayesian Optimisation

被引:0
|
作者
Joy, Tinu Theckel [1 ]
Rana, Santu [1 ]
Gupta, Sunil [1 ]
Venkatesh, Svetha [1 ]
机构
[1] Deakin Univ, Ctr Pattern Recognit & Data Analyt, Geelong, Vic 3216, Australia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperparameters play a crucial role in the model selection of machine learning algorithms. Tuning these hyperparameters can be exhaustive when the data is large. Bayesian optimisation has emerged as an efficient tool for hyperparameter tuning of machine learning algorithms. In this paper, we propose a novel framework for tuning the hyperparameters for big data using Bayesian optimisation. We divide the big data into chunks and generate hyperparameter configurations for the chunks using the standard Bayesian optimisation. We utilise this information from the chunks for hyperparameter tuning on big data using a transfer learning setting. We evaluate the performance of the proposed method on the task of tuning hyperparameters of two machine learning algorithms. We show that our method achieves the best available hyperparameter configuration within less computational time compared to the state-of-art hyperparameter tuning methods.
引用
收藏
页码:2574 / 2579
页数:6
相关论文
共 50 条
  • [21] Bayesian Hyperparameter Estimation using Gaussian Process and Bayesian Optimization
    Katakami, Shun
    Sakamoto, Hirotaka
    Okada, Masato
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2019, 88 (07)
  • [22] Hyperparameter tuning using Quantum Genetic Algorithms
    Lentzas, Athanasios
    Nalmpantis, Christoforos
    Vrakas, Dimitris
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 1412 - 1416
  • [23] GNSS-IR soil moisture estimation using deep learning with Bayesian optimization for hyperparameter tuning
    Daneghian, Patricia
    Rastbood, Asghar
    JOURNAL OF GEODETIC SCIENCE, 2024, 14 (01)
  • [24] Optimizing health data analytics in fog computing using hyperparameter tuning and grid search
    Singh, Kiran Deep
    Singh, Prabh Deep
    Verma, Rohan
    Taneja, Harsh
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2024, 45 (02): : 429 - 438
  • [25] Homogenous Ensembles of Neuro-Fuzzy Classifiers using Hyperparameter Tuning for Medical Data
    Ouifak, Hafsaa
    Afkhkhar, Zaineb
    Manzi, Alain Thierry Iliho
    Idri, Ali
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2024, 32 (03) : 273 - 301
  • [26] Automatic Tuning of Stochastic Gradient Descent with Bayesian Optimisation
    Picheny, Victor
    Dutordoir, Vincent
    Artemev, Artem
    Durrande, Nicolas
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT III, 2021, 12459 : 431 - 446
  • [27] Hyperparameter tuning of supervised bagging ensemble machine learning model using Bayesian optimization for estimating stormwater quality
    Moeini, Mohammadreza
    SUSTAINABLE WATER RESOURCES MANAGEMENT, 2024, 10 (02)
  • [28] Gait Parameter Tuning Using Bayesian Optimisation for an Alligator-Inspired Amphibious Robot
    Thakur, Atul
    DEFENCE SCIENCE JOURNAL, 2023, 73 (05) : 519 - 530
  • [29] Hyperparameter tuning of supervised bagging ensemble machine learning model using Bayesian optimization for estimating stormwater quality
    Mohammadreza Moeini
    Sustainable Water Resources Management, 2024, 10
  • [30] AutoDDC: Hyperparameter Tuning for Direct Data-Driven Control
    Breschi, Valentina
    Formentin, Simone
    IEEE CONTROL SYSTEMS MAGAZINE, 2023, 43 (06): : 98 - 124