Hyperparameter Tuning for Big Data using Bayesian Optimisation

被引:0
|
作者
Joy, Tinu Theckel [1 ]
Rana, Santu [1 ]
Gupta, Sunil [1 ]
Venkatesh, Svetha [1 ]
机构
[1] Deakin Univ, Ctr Pattern Recognit & Data Analyt, Geelong, Vic 3216, Australia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperparameters play a crucial role in the model selection of machine learning algorithms. Tuning these hyperparameters can be exhaustive when the data is large. Bayesian optimisation has emerged as an efficient tool for hyperparameter tuning of machine learning algorithms. In this paper, we propose a novel framework for tuning the hyperparameters for big data using Bayesian optimisation. We divide the big data into chunks and generate hyperparameter configurations for the chunks using the standard Bayesian optimisation. We utilise this information from the chunks for hyperparameter tuning on big data using a transfer learning setting. We evaluate the performance of the proposed method on the task of tuning hyperparameters of two machine learning algorithms. We show that our method achieves the best available hyperparameter configuration within less computational time compared to the state-of-art hyperparameter tuning methods.
引用
收藏
页码:2574 / 2579
页数:6
相关论文
共 50 条
  • [1] Hyperparameter Tuning for Medicare Fraud Detection in Big Data
    Hancock J.T.
    Khoshgoftaar T.M.
    SN Computer Science, 3 (6)
  • [2] Deep Learning on Active Sonar Data Using Bayesian Optimization for Hyperparameter Tuning
    Berg, Henrik
    Hjelmervik, Karl Thomas
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 6546 - 6553
  • [3] Impact of Hyperparameter Tuning in Classifying Highly Imbalanced Big Data
    Hancock, John
    Khoshgoftaar, Taghi M.
    2021 IEEE 22ND INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2021), 2021, : 348 - 354
  • [4] Prediction of karst spring discharge using LSTM with Bayesian optimisation hyperparameter tuning: a laboratory physical model approach
    Opoku, Portia Annabelle
    Shu, Longcang
    Ansah-Narh, Theophilus
    Banahene, Patrick
    Yao, Kouassi Bienvenue Mikael Onan
    Kwaw, Albert Kwame
    Niu, Shuyao
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2024, 10 (01) : 1457 - 1482
  • [5] Prediction of karst spring discharge using LSTM with Bayesian optimisation hyperparameter tuning: a laboratory physical model approach
    Portia Annabelle Opoku
    Longcang Shu
    Theophilus Ansah-Narh
    Patrick Banahene
    Kouassi Bienvenue Mikael Onan Yao
    Albert Kwame Kwaw
    Shuyao Niu
    Modeling Earth Systems and Environment, 2024, 10 : 1457 - 1482
  • [6] Fast hyperparameter tuning using Bayesian optimization with directional derivatives
    Joy, Tinu Theckel
    Rana, Santu
    Gupta, Sunil
    Venkatesh, Svetha
    KNOWLEDGE-BASED SYSTEMS, 2020, 205
  • [7] Efficient Deep Learning Hyperparameter Tuning using Cloud Infrastructure Intelligent Distributed Hyperparameter tuning with Bayesian Optimization in the Cloud
    Ranjit, Mercy Prasanna
    Ganapathy, Gopinath
    Sridhar, Kalaivani
    Arumugham, Vikram
    2019 IEEE 12TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING (IEEE CLOUD 2019), 2019, : 520 - 522
  • [8] Hyperparameter tuning design of performance indicators prediction for hydrogen fuel cells based on Bayesian optimisation with AIGC
    Song, Yi-Tian
    Sun, Yan-Ning
    Zhu, Jia-Yang
    Qiao, Hai-Bo
    Gao, Zeng-Gui
    Liu, Li-Lan
    JOURNAL OF ENGINEERING DESIGN, 2024,
  • [9] Performance Evaluation of Tree-based Models for Big Data Load Forecasting using Randomized Hyperparameter Tuning
    Zainab, Ameema
    Ghrayeb, Ali
    Houchati, Mahdi
    Refaat, Shady S.
    Abu-Rub, Haitham
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 5332 - 5339
  • [10] Hyperparameter Tuning of the Shunt-murmur Discrimination Algorithm Using Bayesian Optimization
    Noda, Fumiya
    Nishijima, Keisuke
    Furuya, Ken'ichi
    2020 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2020, : 929 - 933