divergence form quasilinear elliptic equations;
weak solvability;
Holder regularity;
a priori estimates;
Reifenberg flat domain;
BMO;
COEFFICIENTS;
D O I:
10.1080/17476930903276159
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Existence and global Holder continuity are proved for the weak solution to the Dirichlet problem {div(a(ij)(x, u)D(j)u + a(t)(x, u)) = b(x, u, Du) in Omega subset of R(n), u = 0 on partial derivative Omega over Reifenberg flat domains Omega. The principal coefficients a(ij)(x, u) are discontinuous with respect to x with small BMO-norms and b(x, u, Du) grows as vertical bar Du vertical bar(r) with r < 1 + 2/n.
机构:
Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
Seoul Natl Univ, Res Inst Math, Seoul 08826, South KoreaSeoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
Byun, Sun-Sig
So, Hyoungsuk
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Math Sci, Seoul 08826, South KoreaSeoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea