Quasilinear divergence form elliptic equations in rough domains

被引:6
|
作者
Palagachev, Dian K. [1 ]
机构
[1] Politecn Bari, Dipartimento Matemat, I-70125 Bari, Italy
关键词
divergence form quasilinear elliptic equations; weak solvability; Holder regularity; a priori estimates; Reifenberg flat domain; BMO; COEFFICIENTS;
D O I
10.1080/17476930903276159
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Existence and global Holder continuity are proved for the weak solution to the Dirichlet problem {div(a(ij)(x, u)D(j)u + a(t)(x, u)) = b(x, u, Du) in Omega subset of R(n), u = 0 on partial derivative Omega over Reifenberg flat domains Omega. The principal coefficients a(ij)(x, u) are discontinuous with respect to x with small BMO-norms and b(x, u, Du) grows as vertical bar Du vertical bar(r) with r < 1 + 2/n.
引用
收藏
页码:581 / 591
页数:11
相关论文
共 50 条