CHARACTERIZATION OF A MULTIFUNCTIONAL BIOINSPIRED PIEZOELECTRIC SWIMMER AND ENERGY HARVESTER

被引:0
|
作者
Wang, Yu-Cheng [1 ]
Kohtanen, Eetu [1 ]
Erturk, Alper [1 ]
机构
[1] Georgia Inst Technol, GW Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
关键词
DESIGN; PERFORMANCE; LOCOMOTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fiber-based flexible piezoelectric composites with interdigitated electrodes, namely Macro-Fiber Composite (MFC) structures, strike a balance between the deformation and actuation force capabilities for effective underwater bio-inspired locomotion. These materials are also suitable for vibration-based energy harvesting toward enabling self-powered electronic components. In this work, we design, fabricate, and experimentally characterize an MFC-based bio-inspired swimmer - energy harvester platform. Following in vacuo and in air frequency response experiments, the proposed piezoelectric robotic fish platform is tested and characterized under water for its swimming performance both in free locomotion (in a large water tank) and also in a closed-loop water channel under imposed flow. In addition to swimming speed characterization under resonant actuation, hydrodynamic thrust resultant in both quiescent water and under imposed flow are quantified experimentally. We show that the proposed design easily produces thrust levels on the order of biological fish with similar dimensions. Overall it produces thrust levels higher than other smart material-based designs (such as soft material-based concepts), while offering geometric scalability and silent operation unlike large scale robotic fish platforms that use conventional and bulky actuators. The performance of this untethered swimmer platform in piezoelectric energy harvesting is also quantified by underwater base excitation experiments in a quiescent water and via vortex induced-vibration (VIV) experiments under imposed flow in a water channel. Following basic resistor sweep experiments in underwater base excitation experiments, VIV tests are conducted for cylindrical bluff body configurations of different diameters and distances from the leading edge of the energy harvesting tail portion. The resulting concept and design can find use for underwater swimmer and sensor applications such as ecological monitoring, among others.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Simulation of Piezoelectric Raindrop Energy Harvester
    Chin-Hong, Wong
    Dahari, Zuraini
    Abd Manaf, Asrulnizam
    Sidek, Othman
    Miskam, Muhamad Azman
    Mohamed, Julie Juliewatty
    2013 IEEE TENCON SPRING CONFERENCE, 2013, : 465 - 469
  • [22] A Novel Composite Piezoelectric Energy Harvester
    Liu, Qinghua
    Yang, Zhigang
    Wu, Yue
    Tu, Qianjin
    Wei, Dongdong
    PROCEEDINGS OF THE 2016 INTERNATIONAL FORUM ON MECHANICAL, CONTROL AND AUTOMATION (IFMCA 2016), 2017, 113 : 891 - 894
  • [23] Piezoelectric Energy Harvester for Wireless Sensors
    Zhou Kai
    Xie Fang
    Tao Yi
    DIGITAL DESIGN AND MANUFACTURING TECHNOLOGY III, 2013, 546 : 147 - +
  • [24] A LASER TUNABLE PIEZOELECTRIC ENERGY HARVESTER
    Guo, Da
    Li, Hui-yu
    Tzou, Hornsen
    PROCEEDINGS OF THE 2015 SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES AND DEVICE APPLICATIONS, 2015, : 75 - 79
  • [25] On the optimization of piezoelectric vibration energy harvester
    Deng, Licheng
    Wen, Quan
    Jiang, Senlin
    Zhao, Xingqiang
    She, Yin
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2015, 26 (18) : 2489 - 2499
  • [26] A metamaterial for wearable piezoelectric energy harvester
    Gao, Shanshi
    Gain, Asit Kumar
    Zhang, Liangchi
    SMART MATERIALS AND STRUCTURES, 2021, 30 (01)
  • [27] Biresonant Structure for Piezoelectric Energy Harvester
    Li, Shanshan
    Peng, Zhuoteng
    Zhang, Ai
    Wang, Fei
    2015 INTERNATIONAL CONFERENCE ON MANIPULATION, MANUFACTURING AND MEASUREMENT ON THE NANOSCALE (3M-NANO), 2015, : 174 - 177
  • [28] Adaptive active piezoelectric energy harvester
    Zhang, Liwei
    Zheng, Guoqiang
    Li, Jishun
    International Journal of Digital Content Technology and its Applications, 2012, 6 (17) : 410 - 419
  • [29] Performance of a multipurpose piezoelectric energy harvester
    Fan, Kangqi
    Wang, Liansong
    Zhu, Yingmin
    Liu, Zhaohui
    Yu, Bo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2017, 31 (07):
  • [30] Piezoelectric model of rainfall energy harvester
    Viola, Fabio
    Romano, Pietro
    Miceli, Rosario
    Acciari, Gianluca
    Spataro, Ciro
    2014 NINTH INTERNATIONAL CONFERENCE ON ECOLOGICAL VEHICLES AND RENEWABLE ENERGIES (EVER), 2014,