The number of representations of squares by integral quaternary quadratic forms

被引:1
|
作者
Kim, Kyoungmin [1 ]
机构
[1] Hannam Univ, Dept Math, Daejeon 34430, South Korea
基金
新加坡国家研究基金会;
关键词
Representations of quaternary quadratic forms; squares; cusp forms; eta-quotients;
D O I
10.1142/S1793042122500403
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a positive definite (non-classic) integral quaternary quadratic form. We say f is strongly s-regular if it satisfies a strong regularity property on the number of representations of squares of integers. In this paper, we show that there are exactly 34 strongly s-regular diagonal quaternary quadratic forms representing 1 (see Table 1). In particular, we use eta-quotients to prove the strong s-regularity of the quaternary quadratic form x(2) + 2y(2) + 3z(2) + 10w(2), which is, in fact, of class number 2 (see Lemma 4.5 and Proposition 4.6).
引用
收藏
页码:757 / 775
页数:19
相关论文
共 50 条