Anderson localization versus delocalization of interacting fermions in one dimension

被引:82
|
作者
Schmitteckert, P
Schulze, T
Schuster, C
Schwab, P
Eckern, U
机构
[1] CNRS, GEMME, IPCMS, F-67307 Strasbourg, France
[2] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
[3] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
关键词
D O I
10.1103/PhysRevLett.80.560
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the density matrix renormalization group algorithm, we investigate the lattice model for spinless fermions in one dimension in the presence of a strong interaction and disorder. The phase sensitivity of the ground state energy is determined with high accuracy for systems up to a size of 60 lattice constants. This quantity is found to be log normally distributed. The fluctuations grow algebraically with system size with a universal Exponent of approximate to 2/3 in the localized region of he phase diagram. Surprisingly we find, for an attractive interaction, a delocalized phase of finite extension. The boundary of this delocalized phase is determined.
引用
收藏
页码:560 / 563
页数:4
相关论文
共 50 条
  • [31] ON THE UPPER CRITICAL DIMENSION IN ANDERSON LOCALIZATION
    CASTELLANI, C
    DICASTRO, C
    PELITI, L
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (17): : 1099 - 1103
  • [32] Elko and mass dimension one fermions
    Ahluwalia, Dharam Vir
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2020, 229 (11): : 1997 - 2001
  • [33] BOSONS AND FERMIONS IN ONE SPACE DIMENSION
    WOLF, D
    ZITTARTZ, J
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1983, 51 (01): : 65 - 75
  • [34] Topological phases of fermions in one dimension
    Fidkowski, Lukasz
    Kitaev, Alexei
    PHYSICAL REVIEW B, 2011, 83 (07)
  • [35] Elko and mass dimension one fermions
    Dharam Vir Ahluwalia
    The European Physical Journal Special Topics, 2020, 229 : 1997 - 2001
  • [36] The Casimir effect for fermions in one dimension
    Sundberg, P
    Jaffe, RL
    ANNALS OF PHYSICS, 2004, 309 (02) : 442 - 458
  • [37] Anderson delocalization in one dimensional μ or ε-near-zero metamaterial stacks and other dispersion effects on localization
    Asatryan, A. A.
    Botten, L. C.
    Byrne, M. A.
    Freilikher, V. D.
    Gredeskul, S. A.
    Shadrivov, I. V.
    McPhedran, R. C.
    Kivshar, Yu. A.
    2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [38] Delocalization transition via supersymmetry in one dimension
    Balents, L
    Fisher, MPA
    PHYSICAL REVIEW B, 1997, 56 (20): : 12970 - 12991
  • [39] Localization of a mobile impurity interacting with an Anderson insulator
    Brighi, Pietro
    Michailidis, Alexios A.
    Kirova, Kristina
    Abanin, Dmitry A.
    Serbyn, Maksym
    PHYSICAL REVIEW B, 2022, 105 (22)
  • [40] Anderson localization for two interacting quasiperiodic particles
    Jean Bourgain
    Ilya Kachkovskiy
    Geometric and Functional Analysis, 2019, 29 : 3 - 43