Author summary During the breadmaking process, expanding gas bubbles cause the dough to increase volume. Gluten proteins act as an elastic scaffold in that process, allowing the wheat dough to grow more than other kinds of dough. Thus, explaining the unique viscoelastic properties of gluten at the molecular level may be of great interest to the baking industry. Assessing the structural properties of gluten is difficult because its proteins are disordered. We provide the first molecular dynamics model of gluten elasticity, that is able to distinguish gluten and proteins from different plants, like maize and rice. Our model shows the structural changes the gluten proteins undergo during their deformation, which mimics the mixing of dough during kneading. It also allows for a determination of the force required to extend gluten proteins, as during baking. The data confirms existing theories about gluten, but it also provides molecular-level information about the extraordinary elasticity of gluten. Wheat (Triticum spp.) gluten consists mainly of intrinsincally disordered storage proteins (glutenins and gliadins) that can form megadalton-sized networks. These networks are responsible for the unique viscoelastic properties of wheat dough and affect the quality of bread. These properties have not yet been studied by molecular level simulations. Here, we use a newly developed alpha-C-based coarse-grained model to study similar to 4000-residue systems. The corresponding time-dependent properties are studied through shear and axial deformations. We measure the response force to the deformation, the number of entanglements and cavities, the mobility of residues, the number of the inter-chain bonds, etc. Glutenins are shown to influence the mechanics of gluten much more than gliadins. Our simulations are consistent with the existing ideas about gluten elasticity and emphasize the role of entanglements and hydrogen bonding. We also demonstrate that the storage proteins in maize and rice lead to weaker elasticity which points to the unique properties of wheat gluten.