On the error in the Monte Carlo pricing of some familiar European path-dependent options

被引:0
|
作者
Hörfelt, P [1 ]
机构
[1] Fraunhofer Chalmers Res Ctr Ind Math, SE-41288 Gothenburg, Sweden
关键词
option pricing; path-dependent options; Monte Carlo method; error estimates;
D O I
10.1111/j.0960-1627.2005.00222.x
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This paper studies the relative error in the crude Monte Carlo pricing of some familiar European path-dependent multiasset options. For the crude Monte Carlo method it is well known that the convergence rate O(n(-1/2)), where n is the number of simulations, is independent of the dimension of the integral. This paper also shows that for a large class of pricing problems in the multiasset Black-Scholes market the constant in O( n(-1/2)) is independent of the dimension. To be more specific, the constant is only dependent on the highest volatility among the underlying assets, time to maturity, and degree of confidence interval.
引用
收藏
页码:345 / 357
页数:13
相关论文
共 50 条
  • [41] Pricing discrete path-dependent options under a double exponential jump-diffusion model
    Fuh, Cheng-Der
    Luo, Sheng-Feng
    Yen, Ju-Fang
    JOURNAL OF BANKING & FINANCE, 2013, 37 (08) : 2702 - 2713
  • [42] Monte Carlo methods for pricing financial options
    Bolia, N
    Juneja, S
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2005, 30 (2-3): : 347 - 385
  • [43] Monte Carlo methods for pricing financial options
    N. Bolia
    S. Juneja
    Sadhana, 2005, 30 : 347 - 385
  • [44] A double-exponential fast Gauss transform algorithm for pricing discrete path-dependent options
    Broadie, M
    Yamamoto, Y
    OPERATIONS RESEARCH, 2005, 53 (05) : 764 - 779
  • [45] Pricing path-dependent Bermudan options using Wiener chaos expansion: an embarrassingly parallel approach
    Lelong, Jerome
    JOURNAL OF COMPUTATIONAL FINANCE, 2020, 24 (02) : 1 - 31
  • [46] Efficient Monte Carlo pricing of European options using mean value control variates
    Pellizzari P.
    Decisions in Economics and Finance, 2001, 24 (2) : 107 - 126
  • [47] Efficient simulation for discrete path-dependent option pricing
    Calvin, JM
    WSC'01: PROCEEDINGS OF THE 2001 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2001, : 325 - 328
  • [48] Efficient pricing of path-dependent interest rate derivatives
    da Silva, Allan Jonathan
    Baczynski, Jack
    Vicente, Jose V. M.
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2024, 40 (04) : 1105 - 1124
  • [49] Pricing path-dependent securities by the extended tree method
    Kishimoto, N
    MANAGEMENT SCIENCE, 2004, 50 (09) : 1235 - 1248
  • [50] Deep Signature Algorithm for Multidimensional Path-Dependent Options
    Bayraktar, Erhan
    Feng, Qi
    Zhang, Zhaoyu
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2024, 15 (01): : 194 - 214