On the Parameterized Complexity of Some Optimization Problems Related to Multiple-Interval Graphs

被引:0
|
作者
Jiang, Minghui [1 ]
机构
[1] Utah State Univ, Dept Comp Sci, Logan, UT 84322 USA
来源
COMBINATORIAL PATTERN MATCHING, PROCEEDINGS | 2010年 / 6129卷
关键词
EXTREMAL VALUES; NUMBER;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We show that for any constant t >= 2, k-INDEPENDENT SET and k-DOMINATING SET in t-track interval graphs are W[1]-hard. This settles an open question recently raised by Fellows, Hermelin, Rosamond, and Vialette. We also give an FPT algorithm for k-CLIQUE in t-interval graphs, parameterized by both k and t, with running time max{t(O(k)), 2(O(k log k))} . poly(n), where n is the number of vertices in the graph. This slightly improves the previous FPT algorithm by Fellows, Hermelin, Rosamond, and Vialette. Finally, we use the Will-hardness of k-INDEPENDENT SET in t-track interval graphs to obtain the first parameterized intractability result for a recent bioinfonuatics problem called MAXIMAL STRIP RECOVERY (MSR). We show that MSR-d is W[1]-hard for any constant d >= 4 when the parameter is either the total length of the strips, or the total number of adjacencies in the strips, or the number of strips in the optimal solution.
引用
收藏
页码:125 / 137
页数:13
相关论文
共 50 条
  • [21] Parameterized approximation algorithms for some location problems in graphs
    Leitert, Arne
    Dragan, Feodor F.
    THEORETICAL COMPUTER SCIENCE, 2019, 755 : 48 - 64
  • [22] The Parameterized Complexity of Some Geometric Problems in Unbounded Dimension
    Giannopoulos, Panos
    Knauer, Christian
    Rote, Guenter
    PARAMETERIZED AND EXACT COMPUTATION, 2009, 5917 : 198 - 209
  • [23] Parameterized extension complexity of independent set and related problems
    Gajarsky, Jakub
    Hlineny, Petr
    Tiwary, Hans Raj
    DISCRETE APPLIED MATHEMATICS, 2018, 248 : 56 - 67
  • [24] INTERVAL-PARAMETER OPTIMIZATION PROBLEMS ON GRAPHS
    Perepelitsa, V. A.
    Kozin, I. V.
    Maksishko, N. K.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2009, 45 (02) : 167 - 176
  • [25] Re-entry trajectory optimization using a multiple-interval Radau pseudospectral method
    Han, Peng
    Shan, Jia-Yuan
    Meng, Xiu-Yun
    Journal of Beijing Institute of Technology (English Edition), 2013, 22 (01): : 20 - 27
  • [26] Extension of Some Edge Graph Problems: Standard and Parameterized Complexity
    Casel, Katrin
    Fernau, Henning
    Ghadikolaei, Mehdi Khosravian
    Monnot, Jerome
    Sikora, Florian
    FUNDAMENTALS OF COMPUTATION THEORY, FCT 2019, 2019, 11651 : 185 - 200
  • [27] Preprocessing complexity for some graph problems parameterized by structural parameters
    Lafond, Manuel
    Luo, Weidong
    DISCRETE APPLIED MATHEMATICS, 2025, 371 : 46 - 59
  • [28] Space Complexity of Optimization Problems in Planar Graphs
    Datta, Samir
    Kulkarni, Raghav
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION (TAMC 2014), 2014, 8402 : 300 - 311
  • [29] Preprocessing complexity for some graph problems parameterized by structural parameters
    Lafond, Manuel
    Luo, Weidong
    XII LATIN-AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, LAGOS 2023, 2023, 224 : 130 - 139
  • [30] On Partitioning Interval Graphs into Proper Interval Subgraphs and Related Problems
    Gardi, Frederic
    JOURNAL OF GRAPH THEORY, 2011, 68 (01) : 38 - 54