Recent advancements in CRISPR-Cas toolbox for imaging applications

被引:9
|
作者
Singh, Vikram [1 ]
Jain, Mukesh [1 ]
机构
[1] Jawaharlal Nehru Univ, Sch Computat & Integrat Sci, New Delhi, India
关键词
Aptamers; CRISPR-Cas; fluorescence; halotag; imaging; molecular beacons; organic dyes; Pumilio; quantum dots; SuperNova tagging system; SCALE CHROMATIN ORGANIZATION; HOMOLOGOUS RECOMBINATION; DNA-SEQUENCES; GENOMIC LOCI; LIVE VISUALIZATION; RNA TRANSCRIPTS; CELL-CYCLE; DYNAMICS; CHROMOSOME; PROTEINS;
D O I
10.1080/07388551.2021.1950608
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The imaging of chromatin, genomic loci, RNAs, and proteins is very important to study their localization, interaction, and coordinated regulation. Recently, several clustered regularly interspaced short palindromic repeats (CRISPR) based imaging methods have been established. The refurbished tool kits utilizing deactivated Cas9 (dCas9) and dCas13 have been established to develop applications of CRISPR-Cas technology beyond genome editing. Here, we review recent advancements in CRISPR-based methods that enable efficient imaging and visualization of chromatin, genomic loci, RNAs, and proteins. RNA aptamers, Pumilio, SuperNova tagging system, molecular beacons, halotag, bimolecular fluorescence complementation, RNA-guided endonuclease in situ labeling, and oligonucleotide-based imaging methods utilizing fluorescent proteins, organic dyes, or quantum dots have been developed to achieve improved fluorescence and signal-to-noise ratio for the imaging of chromatin or genomic loci. RNA-guided RNA targeting CRISPR systems (CRISPR/dCas13) and gene knock-in strategies based on CRISPR/Cas9 mediated site-specific cleavage and DNA repair mechanisms have been employed for efficient RNA and protein imaging, respectively. A few CRISPR-Cas-based methods to investigate the coordinated regulation of DNA-protein, DNA-RNA, or RNA-protein interactions for understanding chromatin dynamics, transcription, and protein function are also available. Overall, the CRISPR-based methods offer a significant improvement in elucidating chromatin organization and dynamics, RNA visualization, and protein imaging. The current and future advancements in CRISPR-based imaging techniques can revolutionize genome biology research for various applications.
引用
收藏
页码:508 / 531
页数:24
相关论文
共 50 条
  • [31] Sabotage of CRISPR-Cas
    Du Toit, Andrea
    NATURE REVIEWS MICROBIOLOGY, 2024, 22 (01) : 1 - 1
  • [32] Applications of the CRISPR-Cas system for infectious disease diagnostics
    Li, Peipei
    Wang, Li
    Yang, Junning
    Di, Li-Jun
    Li, Jingjing
    EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2021, 21 (07) : 723 - 732
  • [33] Expanding the plant genome editing toolbox with recently developed CRISPR-Cas systems
    Wada, Naoki
    Osakabe, Keishi
    Osakabe, Yuriko
    PLANT PHYSIOLOGY, 2022, 188 (04) : 1825 - 1837
  • [34] The CRISPR-Cas immune system: Biology, mechanisms and applications
    Rath, Devashish
    Amlinger, Lina
    Rath, Archana
    Lundgren, Magnus
    BIOCHIMIE, 2015, 117 : 119 - 128
  • [35] Characterization and applications of Type I CRISPR-Cas systems
    Hidalgo-Cantabrana, Claudio
    Barrangou, Rodolphe
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2020, 48 (01) : 15 - 23
  • [37] Applications of CRISPR-Cas systems in lactic acid bacteria
    Roberts, Avery
    Barrangou, Rodolphe
    FEMS MICROBIOLOGY REVIEWS, 2020, 44 (05) : 523 - 537
  • [38] RNA-Targeting CRISPR-Cas Systems and Their Applications
    Burmistrz, Michal
    Krakowski, Kamil
    Krawczyk-Balska, Agata
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (03)
  • [39] An overview of applications of CRISPR-Cas technologies in biomedical engineering
    Jamehdor, Saleh
    Zaboli, Kasra Arbabi
    Naserian, Sina
    Thekkiniath, Jose
    Omidy, Honey Alef
    Teimoori, Ali
    Johari, Behrooz
    Taromchi, Amir Hossein
    Sasano, Yu
    Kaboli, Saeed
    FOLIA HISTOCHEMICA ET CYTOBIOLOGICA, 2020, 58 (03) : 163 - 173
  • [40] Comprehensive optimization of a reporter assay toolbox for three distinct CRISPR-Cas systems
    Chen, Li
    Gao, Haoyuan
    Zhou, Bing
    Wang, Yu
    FEBS OPEN BIO, 2021, 11 (07): : 1965 - 1980