Partial Multi-Label Learning with Noisy Label Identification

被引:0
|
作者
Xie, Ming-Kun [1 ]
Huang, Sheng-Jun [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, MIIT Key Lab Pattern Anal & Machine Intelligence, Coll Comp Sci & Technol, Collaborat Innovat Ctr Novel Software Technol & I, Nanjing 211106, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Partial multi-label learning (PML) deals with problems where each instance is assigned with a candidate label set, which contains multiple relevant labels and some noisy labels. Recent studies usually solve PML problems with the disambiguation strategy, which recovers ground-truth labels from the candidate label set by simply assuming that the noisy labels are generated randomly. In real applications, however, noisy labels are usually caused by some ambiguous contents of the example. Based on this observation, we propose a partial multi-label learning approach to simultaneously recover the ground-truth information and identify the noisy labels. The two objectives are formalized in a unified framework with trace norm and l(1) norm regularizers. Under the supervision of the observed noise-corrupted label matrix, the multi-label classifier and noisy label identifier are jointly optimized by incorporating the label correlation exploitation and feature-induced noise model. Extensive experiments on synthetic as well as real-world data sets validate the effectiveness of the proposed approach.
引用
收藏
页码:6454 / 6461
页数:8
相关论文
共 50 条
  • [41] Semi-Supervised Partial Multi-Label Learning
    Xie, Ming-Kun
    Huang, Sheng-Jun
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 691 - 700
  • [42] Regularized partial least squares for multi-label learning
    Huawen Liu
    Zongjie Ma
    Jianmin Han
    Zhongyu Chen
    Zhonglong Zheng
    International Journal of Machine Learning and Cybernetics, 2018, 9 : 335 - 346
  • [43] Few-Shot Partial Multi-Label Learning
    Zhao, Yunfeng
    Yu, Guoxian
    Liu, Lei
    Yan, Zhongmin
    Domeniconi, Carlotta
    Cui, Lizhen
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 926 - 935
  • [44] Fuzzy bifocal disambiguation for partial multi-label learning
    Fang, Xiaozhao
    Hu, Xi
    Hu, Yan
    Chen, Yonghao
    Xie, Shengli
    Han, Na
    NEURAL NETWORKS, 2025, 185
  • [45] Exploitation of Label Relationship in Multi-Label Learning
    Zhou, Zhi-Hua
    2012 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING (GRC 2012), 2012, : 19 - 19
  • [46] Asymmetry label correlation for multi-label learning
    Jiachao Bao
    Yibin Wang
    Yusheng Cheng
    Applied Intelligence, 2022, 52 : 6093 - 6105
  • [47] Privileged Label Enhancement with Multi-Label Learning
    Zhu, Wenfang
    Jia, Xiuyi
    Li, Weiwei
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2376 - 2382
  • [48] Asymmetry label correlation for multi-label learning
    Bao, Jiachao
    Wang, Yibin
    Cheng, Yusheng
    APPLIED INTELLIGENCE, 2022, 52 (06) : 6093 - 6105
  • [49] Explainable Noisy Label Flipping for Multi-Label Fashion Image Classification
    Ferreira, Beatriz Quintino
    Costeira, Joao P.
    Gomes, Joao P.
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 3911 - 3915
  • [50] Integrating label confidence-based feature selection for partial multi-label learning
    Han, Qingqi
    Hu, Liang
    Gao, Wanfu
    PATTERN RECOGNITION, 2025, 161