Explainable Deep Neural Network for Design of Electric Motors

被引:26
|
作者
Sasaki, Hidenori [1 ,2 ]
Hidaka, Yuki [1 ]
Igarashi, Hajime [2 ]
机构
[1] Mitsubishi Electr Corp, Adv Technol Res & Dev Ctr, Amagasaki, Hyogo 6618661, Japan
[2] Hokkaido Univ, Grad Sch, Fac Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
关键词
Deep learning; explainable artificial intelligence; gradient-weighted class activation mapping (Grad-CAM); interior permanent magnet (IPM) motor; topology optimization;
D O I
10.1109/TMAG.2021.3063141
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study presents a novel two-step optimization method that incorporates explainable neural networks into topology optimization. The deep neural network (DNN) is trained to infer the torque performance from the input image of the motor cross section. The sensitive region that has a significant influence on the average torque is extracted using gradient-weighted class activation mapping (Grad-CAM) constructed from the DNN. Then, the optimization with respect to the torque ripple is performed only in the incentive region with little influence on the average torque. The proposed method is shown to increase the average torque of an interior permanent magnet (IPM) motor by 14% and reduce the torque ripple by 79% compared with the original model.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Deep Neural Network Driven Electric Spring for Voltage Regulation
    Javaid, Muhammad Sharjeel
    Bin Irshad, Usama
    Abido, M. A.
    Javaid, Muhammad Hanzla
    Bouchekara, H. R. E. H.
    2020 INTERNATIONAL CONFERENCE ON SMART GRIDS AND ENERGY SYSTEMS (SGES 2020), 2020, : 527 - 532
  • [32] Deep Neural Networks and Explainable Machine Learning
    Maratea, Antonio
    Ferone, Alessio
    FUZZY LOGIC AND APPLICATIONS, WILF 2018, 2019, 11291 : 253 - 256
  • [33] Towards explainable deep neural networks (xDNN)
    Angelov, Plamen
    Soares, Eduardo
    NEURAL NETWORKS, 2020, 130 (130) : 185 - 194
  • [34] A New Artificial Neural Network-Based Failure Determination System for Electric Motors
    S. Bicakci
    M. Coramik
    H. Gunes
    H. Citak
    Y. Ege
    Arabian Journal for Science and Engineering, 2022, 47 : 835 - 847
  • [35] A New Artificial Neural Network-Based Failure Determination System for Electric Motors
    Bicakci, S.
    Coramik, M.
    Gunes, H.
    Citak, H.
    Ege, Y.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (01) : 835 - 847
  • [36] Inverse Design of Graphene FET by Deep Neural Network
    Seo, Gyeong Min
    Baek, Chang-Ki
    Kong, Byoung Don
    2021 IEEE 21ST INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE NANO 2021), 2021, : 134 - 137
  • [37] Sphynx: A Deep Neural Network Design for Private Inference
    Cho, Minsu
    Ghodsi, Zahra
    Reagen, Brandon
    Garg, Siddharth
    Hegde, Chinmay
    IEEE SECURITY & PRIVACY, 2022, 20 (05) : 22 - 34
  • [38] An Architecture Design Method of Deep Convolutional Neural Network
    Suzuki, Satoshi
    Shouno, Hayaru
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT III, 2016, 9949 : 538 - 546
  • [39] Design and Implementation of Deep Neural Network for Edge Computing
    Zhang, Junyang
    Guo, Yang
    Hu, Xiao
    Li, Rongzhen
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (08) : 1982 - 1996
  • [40] A Lightweight, Efficient and Explainable-by-Design Convolutional Neural Network for Internet Traffic Classification
    Fauvel, Kevin
    Chen, Fuxing
    Rossi, Dario
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 4013 - 4023