ON THE CONVERGENCE OF THE WAVELET-GALERKIN METHOD FOR NONLINEAR FILTERING

被引:2
|
作者
Nowak, Lukasz D. [1 ]
Paslawska-Poludniak, Monika [2 ]
Twardowska, Krystyna [3 ]
机构
[1] Warsaw Univ Technol, Fac Math & Informat Sci, PL-00661 Warsaw, Poland
[2] Rzeszow Univ Technol, Dept Math, PL-35959 Rzeszow, Poland
[3] Warsaw Univ Life Sci SGGW, Fac Appl Informat & Math, PL-02776 Warsaw, Poland
关键词
Zakai equation; Galerkin method; wavelet basis; Euler scheme; REAL-TIME SOLUTION; ZAKAI EQUATION; APPROXIMATIONS; BASES;
D O I
10.2478/v10006-010-0007-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The aim of the paper is to examine the wavelet-Galerkin method for the solution of filtering equations. We use a wavelet biorthogonal basis with compact support for approximations of the solution. Then we compute the Zakai equation for our filtering problem and consider the implicit Euler scheme in time and the Galerkin scheme in space for the solution of the Zakai equation. We give theorems on convergence and its rate. The method is numerically much more efficient than the classical Galerkin method.
引用
收藏
页码:93 / 108
页数:16
相关论文
共 50 条
  • [1] Stability and convergence of the wavelet-Galerkin method for the sideways heat equation
    Reginska, T.
    Elden, L.
    Journal of Inverse and Ill-Posed Problems, 2000, 8 (01): : 31 - 49
  • [2] On the generalized wavelet-Galerkin method
    Yang, Zhaochen
    Liao, Shijun
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 331 : 178 - 195
  • [3] Wavelet-Galerkin Quasilinearization Method for Nonlinear Boundary Value Problems
    Saeed, Umer
    Rehman, Mujeeb Ur
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [4] Wavelet-Galerkin method for plane elastostatics
    Dumont, Serge
    Lebon, Frederic
    COMPUTATIONAL & APPLIED MATHEMATICS, 1999, 18 (02): : 131 - 148
  • [5] PARALLEL IMPLEMENTATION OF WAVELET-GALERKIN METHOD
    Finek, Vaclav
    Simunkova, Martina
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 16, 2013, : 69 - 74
  • [6] Wavelet-Galerkin method for the Kolmogorov equation
    Liang, ZG
    Yau, SST
    MATHEMATICAL AND COMPUTER MODELLING, 2004, 40 (9-10) : 1093 - 1121
  • [7] Wavelet-Galerkin approximation of nonlinear parabolic equation
    Wu, Boying
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 1999, 31 (06): : 12 - 15
  • [8] Wavelet-Galerkin method for periodic heterogeneous media
    Universite Montpellier, Montpellier, France
    Comput Struct, 1 (55-65):
  • [9] Wavelet-Galerkin method for computations of electromagnetic fields
    Yang, SY
    Ni, GZ
    Qian, JG
    Li, RL
    IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) : 2493 - 2496
  • [10] Wavelet-Galerkin method for periodic heterogeneous media
    Dumont, S
    Lebon, F
    COMPUTERS & STRUCTURES, 1996, 61 (01) : 55 - 65