Wavelet-Galerkin method for plane elastostatics

被引:0
|
作者
Dumont, Serge [1 ]
Lebon, Frederic [2 ]
机构
[1] Fac Math & Informat, F-80039 Amiens, France
[2] Univ Montpellier 2, Lab Mecan & Genie Civil, F-34095 Montpellier, France
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 1999年 / 18卷 / 02期
关键词
Elastostatics; wavelet transform; fictitious domains; augmented Lagrangian;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to anew algorithm to solve elastostatics problems on any shape domain. Our approach is based on a wavelet-Galerlcin method. Due to the form of the wavelet bases, the general domain is included in a square fictitious domain, and the initial problem is extended over this square. The boundary conditions are imposed by an augmented Lagrangian method. Numerical examples are presented. Comparisons are done with analytic solutions and with finite element computations.
引用
收藏
页码:131 / 148
页数:18
相关论文
共 50 条
  • [1] Wavelet-Galerkin method for plane elastostatics (vol 18, pg 131, 1999)
    Dumont, Serge
    Lebon, Frederic
    COMPUTATIONAL & APPLIED MATHEMATICS, 1999, 18 (03): : 369 - 369
  • [2] On the generalized wavelet-Galerkin method
    Yang, Zhaochen
    Liao, Shijun
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 331 : 178 - 195
  • [3] PARALLEL IMPLEMENTATION OF WAVELET-GALERKIN METHOD
    Finek, Vaclav
    Simunkova, Martina
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 16, 2013, : 69 - 74
  • [4] Multiscale wavelet-Galerkin method for meshless analysis of plane elasticity problems
    Kim, YY
    Jang, GW
    Kim, JE
    COMPUTATIONAL MECHANICS, VOLS 1 AND 2, PROCEEDINGS: NEW FRONTIERS FOR THE NEW MILLENNIUM, 2001, : 959 - 964
  • [5] Wavelet-Galerkin method for the Kolmogorov equation
    Liang, ZG
    Yau, SST
    MATHEMATICAL AND COMPUTER MODELLING, 2004, 40 (9-10) : 1093 - 1121
  • [6] ON THE CONVERGENCE OF THE WAVELET-GALERKIN METHOD FOR NONLINEAR FILTERING
    Nowak, Lukasz D.
    Paslawska-Poludniak, Monika
    Twardowska, Krystyna
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2010, 20 (01) : 93 - 108
  • [7] Wavelet-Galerkin method for periodic heterogeneous media
    Universite Montpellier, Montpellier, France
    Comput Struct, 1 (55-65):
  • [8] Wavelet-Galerkin method for computations of electromagnetic fields
    Yang, SY
    Ni, GZ
    Qian, JG
    Li, RL
    IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) : 2493 - 2496
  • [9] Wavelet-Galerkin method for periodic heterogeneous media
    Dumont, S
    Lebon, F
    COMPUTERS & STRUCTURES, 1996, 61 (01) : 55 - 65
  • [10] Wavelet-Galerkin method for integro-differential equations
    Avudainayagam, A
    Vani, C
    APPLIED NUMERICAL MATHEMATICS, 2000, 32 (03) : 247 - 254