Using recurrent neural networks for automatic chromosome classification

被引:0
|
作者
Martínez, U [1 ]
Juan, A [1 ]
Casacuberta, F [1 ]
机构
[1] Univ Politecn Valencia, Inst Tecnol Informat, Dept Sistemas Informat & Computac, Valencia 46020, Spain
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Partial recurrent connectionist models can be used for classification of objects of variable length. In this work, an Elman network has been used for chromosome classification. Experiments were carried out using the Copenhagen data set. Local features over normal slides to the axis of the chromosomes were calculated, which produced a type of time-varying input pattern. Results showed an overall error rate of 5.7%, which is a good performance in a task which does not take into account cell context (isolated chromosome classification).
引用
收藏
页码:565 / 570
页数:6
相关论文
共 50 条
  • [41] Automatic Classification of Music Genre using Masked Conditional Neural Networks
    Medhat, Fady
    Chesmore, David
    Robinson, John
    2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2017, : 979 - 984
  • [42] Automatic Fish Species Classification Using Deep Convolutional Neural Networks
    Iqbal, Muhammad Ather
    Wang, Zhijie
    Ali, Zain Anwar
    Riaz, Shazia
    WIRELESS PERSONAL COMMUNICATIONS, 2021, 116 (02) : 1043 - 1053
  • [43] Automatic Concurrent Arrhythmia Classification Using Deep Residual Neural Networks
    Nankani, Deepankar
    Saikia, Pallabi
    Baruah, Rashmi Dutta
    2020 COMPUTING IN CARDIOLOGY, 2020,
  • [44] Automatic classification of grouper species by their sounds using deep neural networks
    Ibrahim, Ali K.
    Zhuang, Hanqi
    Cherubin, Laurent M.
    Scharer-Umpierre, Michelle T.
    Erdol, Nurgun
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2018, 144 (03): : EL196 - EL202
  • [45] Automatic fault classification in photovoltaic modules using Convolutional Neural Networks
    Fonseca Alves, Ricardo Henrique
    de Deus Junior, Getulio Antero
    Marra, Enes Goncalves
    Lemos, Rodrigo Pinto
    RENEWABLE ENERGY, 2021, 179 : 502 - 516
  • [46] Automatic classification of mesoscale auroral forms using convolutional neural networks
    Guo, Z. -X.
    Yang, J. -Y.
    Dunlop, M. W.
    Cao, J. -B.
    Li, L. -Y.
    Ma, Y. -D.
    Ji, K. -F.
    Xiong, C.
    Li, J.
    Ding, W. -T.
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2022, 235
  • [47] Automatic classification of grouper species by their sounds using deep neural networks
    Ibrahim, Ali K. (Aibrahim2014@fau.edu), 1600, Acoustical Society of America (144):
  • [48] Automatic defect classification in visual inspection of semiconductors using neural networks
    Kameyama, K
    Kosugi, Y
    Okahashi, T
    Izumita, M
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1998, E81D (11) : 1261 - 1271
  • [49] Automatic Fish Species Classification Using Deep Convolutional Neural Networks
    Muhammad Ather Iqbal
    Zhijie Wang
    Zain Anwar Ali
    Shazia Riaz
    Wireless Personal Communications, 2021, 116 : 1043 - 1053
  • [50] Automatic classification of polymer coating quality using artificial neural networks
    Lee, CC
    Mansfeld, F
    CORROSION SCIENCE, 1999, 41 (03) : 439 - 461