On the Probabilistic Convergence Spaces: Monad and its Eilenberg-Moore Category

被引:2
|
作者
Ahsanullah, T. M. G. [1 ]
Baran, Tesnim Meryem [2 ]
Al-Thukair, Fawzi [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
[2] MEB, Kayseri, Turkey
关键词
Probabilistic metric space; probabilistic convergence space; probabilistic metric group; probabilistic convergence group; probabilistic convergence transformation group; endofunctor; natural transformation; adjunction; monad; free algebra; Eilenberg-Moore algebra; MONOIDS;
D O I
10.1142/S179300572250020X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the category of probabilistic convergence spaces - a supercategory of the category of topological spaces; recently, we brought to light the categories of probabilistic convergence groups, probabilistic metric probabilistic convergence groups, probabilistic convergence transformation groups, along with their underpinning natural examples. The purpose of this paper is, first, to establish a result on the isomorphism between the categories of probabilistic metric groups, and probabilistic metric probabilistic convergence groups. Second, among others, we explore a monad in relation with probabilistic convergence groups, and probabilistic convergence spaces, and their related algebras. In so doing, we consider a product of the categories of probabilistic convergence groups and probabilistic convergence spaces in an attempt to construct a monad on it such that the corresponding category of algebras, the so-called Eilenberg-Moore category, is isomorphic to the category of probabilistic convergence transformation groups. Finally, invoking so-called Beck's theorem on characterization of algebras, and starting with a particular adjunction, we achieve a monad. Conversely, given a monad, we obtain an adjunction which coincides with the original monad.
引用
收藏
页码:385 / 405
页数:21
相关论文
共 50 条
  • [41] The Eilenberg-Moore spectral sequence in K-theory
    Jeanneret, A
    Osse, A
    TOPOLOGY, 1999, 38 (05) : 1049 - 1073
  • [42] Derived string topology and the Eilenberg-Moore spectral sequence
    Katsuhiko Kuribayashi
    Luc Menichi
    Takahito Naito
    Israel Journal of Mathematics, 2015, 209 : 745 - 802
  • [43] Preludes to the Eilenberg-Moore and the Leray-Serre spectral sequences
    Neumann, Frank
    Szymik, Markus
    DOCUMENTA MATHEMATICA, 2024, 29 : 1319 - 1339
  • [44] ON KUNNETH THEOREM .1. EILENBERG-MOORE SPECTRAL SEQUENCE
    SMITH, L
    MATHEMATISCHE ZEITSCHRIFT, 1970, 116 (02) : 94 - &
  • [45] Behavior of the Eilenberg-Moore spectral sequence in derived string topology
    Kuribayashi, Katsuhiko
    Menichi, Luc
    Naito, Takahito
    TOPOLOGY AND ITS APPLICATIONS, 2014, 164 : 24 - 44
  • [46] Eilenberg-Moore spectral sequence calculation of function space cohomology
    Katsuhiko Kuribayashi
    manuscripta mathematica, 2004, 114 : 305 - 325
  • [47] Eilenberg-Moore spectral sequence calculation of function space cohomology
    Kuribayashi, K
    MANUSCRIPTA MATHEMATICA, 2004, 114 (03) : 305 - 325
  • [48] Eilenberg-Moore and Kleisli Type Categories for Bimonads on Arbitrary Categories
    Agore, A. L.
    RESULTS IN MATHEMATICS, 2022, 77 (06)
  • [49] A Sufficient Condition for Liftable Adjunctions between Eilenberg-Moore Categories
    Nishizawa, Koki
    Furusawa, Hitoshi
    RELATIONAL AND ALGEBRAIC METHODS IN COMPUTER SCIENCE (RAMICS 2014), 2014, 8428 : 261 - 276
  • [50] A new Kenzo module for computing the Eilenberg-Moore spectral sequence
    Romero, Ana
    Rubio, Julio
    Sergeraert, Francis
    Szymik, Markus
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2020, 54 (02): : 57 - 60