Experimental Demonstration of the Einstein-Podolsky-Rosen Steering Game Based on the All-Versus-Nothing Proof

被引:90
|
作者
Sun, Kai [1 ,2 ]
Xu, Jin-Shi [1 ,2 ]
Ye, Xiang-Jun [3 ]
Wu, Yu-Chun [1 ,2 ]
Chen, Jing-Ling [3 ,4 ]
Li, Chuan-Feng [1 ,2 ]
Guo, Guang-Can [1 ,2 ]
机构
[1] Chinese Acad Sci, Univ Sci & Technol China, Key Lab Quantum Informat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
[3] Nankai Univ, Chern Inst Math, Div Theoret Phys, Tianjin 30071, Peoples R China
[4] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
QUANTUM; ENTANGLEMENT; PARADOX; STATES;
D O I
10.1103/PhysRevLett.113.140402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Einstein-Podolsky-Rosen (EPR) steering, a generalization of the original concept of "steering" proposed by Schrodinger, describes the ability of one system to nonlocally affect another system's states through local measurements. Some experimental efforts to test EPR steering in terms of inequalities have been made, which usually require many measurement settings. Analogy to the "all-versus-nothing" (AVN) proof of Bell's theorem without inequalities, testing steerability without inequalities would be more strong and require less resources. Moreover, the practical meaning of steering implies that it should also be possible to store the state information on the side to be steered, a result that has not yet been experimentally demonstrated. Using a recent AVN criterion for two-qubit entangled states, we experimentally implement a practical steering game using quantum memory. Furthermore, we develop a theoretical method to deal with the noise and finite measurement statistics within the AVN framework and apply it to analyze the experimental data. Our results clearly show the facilitation of the AVN criterion for testing steerability and provide a particularly strong perspective for understanding EPR steering.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Chained Einstein-Podolsky-Rosen steering inequalities with improved visibility
    Meng, Hui-Xian
    Zhou, Jie
    Ren, Changliang
    Su, Hong-Yi
    Chen, Jing-Ling
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2018, 16 (04)
  • [42] Einstein-Podolsky-Rosen steering and nonlocality in quantum dot systems
    Berrada, K.
    Eleuch, H.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2021, 126
  • [43] Feedback Control on Einstein-Podolsky-Rosen Steering of Dissipative System
    Huang, Zhiming
    BRAZILIAN JOURNAL OF PHYSICS, 2019, 49 (02) : 215 - 220
  • [44] Genuine High-Order Einstein-Podolsky-Rosen Steering
    Li, Che-Ming
    Chen, Kai
    Chen, Yueh-Nan
    Zhang, Qiang
    Chen, Yu-Ao
    Pan, Jian-Wei
    PHYSICAL REVIEW LETTERS, 2015, 115 (01)
  • [45] How relativistic motion affects Einstein-Podolsky-Rosen steering
    Sun, Wen-Yang
    Wang, Dong
    Ye, Liu
    LASER PHYSICS LETTERS, 2017, 14 (09)
  • [46] DETECTING EINSTEIN-PODOLSKY-ROSEN STEERING FOR CONTINUOUS VARIABLE WAVEFUNCTIONS
    Su, Hong-Yi
    Chen, Jing-Ling
    Wu, Chunfeng
    Deng, Dong-Ling
    Oh, C. H.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2013, 11 (02)
  • [47] Improving Einstein-Podolsky-Rosen steering inequalities with state information
    Schneeloch, James
    Broadbent, Curtis J.
    Howell, John C.
    PHYSICS LETTERS A, 2014, 378 (10) : 766 - 769
  • [48] Reference-frame-independent Einstein-Podolsky-Rosen steering
    Wollmann, Sabine
    Hall, Michael J. W.
    Patel, Raj B.
    Wiseman, Howard M.
    Pryde, Geoff J.
    PHYSICAL REVIEW A, 2018, 98 (02)
  • [49] Einstein-Podolsky-Rosen steering: Its geometric quantification and witness
    Ku, Huan-Yu
    Chen, Shin-Liang
    Budroni, Costantino
    Miranowicz, Adam
    Chen, Yueh-Nan
    Nori, Franco
    PHYSICAL REVIEW A, 2018, 97 (02)
  • [50] Certification of non-Gaussian Einstein-Podolsky-Rosen steering
    Tian, Mingsheng
    Zou, Zihang
    Zhang, Da
    Barral, David
    Bencheikh, Kamel
    He, Qiongyi
    Sun, Feng-Xiao
    Xiang, Yu
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (01):