On the Prediction of Atmospheric Corrosion of Metals and Alloys in Chile Using Artificial Neural Networks

被引:0
|
作者
Vera, Rosa [1 ]
Ossandon, Sebastian [2 ]
机构
[1] Pontificia Univ Catolica Valparaiso, Fac Ciencias, Inst Quim, Valparaiso, Chile
[2] Pontificia Univ Catolica Valparaiso, Fac Ciencias, Inst Matemat, Valparaiso, Chile
来源
关键词
Atmospheric corrosion; weight loss; artificial neural networks; carbon steel; galvanised steel; copper; aluminium; POWER ELECTRICAL CONDUCTORS; MARINE; STEEL; POLLUTANTS;
D O I
暂无
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Most metals and alloys exposed to the environment suffer deterioration due to the effects of atmospheric corrosion. This study presents results obtained for the corrosion of carbon steel, galvanised steel, copper and aluminium exposed to the environment for a period of 3 years, at 9 different sites around Chile. Mathematical models based on artificial neural networks are used to evaluate the corrosion of the metals and alloys as a function of meteorological variables (relative humidity, temperature and amount of rainfall), pollutants (chloride and sulphur dioxide) and time. The advantages of these models in predicting corrosion is also shown in comparison to traditional statistical regression models when considering the dependence of corrosion as a function of time alone.
引用
收藏
页码:7131 / 7151
页数:21
相关论文
共 50 条
  • [1] Corrosion rate prediction for metals in biodiesel using artificial neural networks
    Rocabruno-Valdes, C. I.
    Gonzalez-Rodriguez, J. G.
    Diaz-Blanco, Y.
    Juantorena, A. U.
    Munoz-Ledo, J. A.
    El-Hamzaoui, Y.
    Hernandez, J. A.
    [J]. RENEWABLE ENERGY, 2019, 140 : 592 - 601
  • [2] Prediction of corrosion potential using the generalized artificial neural networks method
    Cherifi, Wafa Nor El Houda
    Houmadi, Youcef
    Mamoune, Sidi Mohammed Aissa
    [J]. CANADIAN JOURNAL OF CIVIL ENGINEERING, 2022, 49 (06) : 1040 - 1048
  • [3] Orbit-centered atmospheric density prediction using artificial neural networks
    Perez, David
    Wohlberg, Brendt
    Lovell, Thomas Alan
    Shoemaker, Michael
    Bevilacqua, Riccardo
    [J]. ACTA ASTRONAUTICA, 2014, 98 : 9 - 23
  • [4] Using atmospheric inputs for Artificial Neural Networks to improve wind turbine power prediction
    Nielson, Jordan
    Bhaganagar, Kiran
    Meka, Rajitha
    Alaeddini, Adel
    [J]. Energy, 2020, 190
  • [5] Using atmospheric inputs for Artificial Neural Networks to improve wind turbine power prediction
    Nielson, Jordan
    Bhaganagar, Kiran
    Meka, Rajitha
    Alaeddini, Adel
    [J]. ENERGY, 2020, 190
  • [6] Prediction of the property of corrosion resistance of a surface alloyed layer by using artificial neural networks
    Xu, J
    Liu, WJ
    Xu, Z
    [J]. SURFACE REVIEW AND LETTERS, 2005, 12 (04) : 569 - 572
  • [7] Prediction of ambient PM10 and toxic metals using artificial neural networks
    Chelani, AB
    Gajghate, DG
    Hasan, MZ
    [J]. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2002, 52 (07) : 805 - 810
  • [8] PREDICTION OF THE ALUMINUM SILICON MODIFICATION LEVEL IN THE AlSiCu ALLOYS USING ARTIFICIAL NEURAL NETWORKS
    Francis, R.
    Sokolowski, J.
    [J]. METALLURGICAL & MATERIALS ENGINEERING-ASSOCIATION OF METALLURGICAL ENGINEERS OF SERBIA, 2008, 14 (01): : 3 - 15
  • [9] Phenomenological modelling of atmospheric corrosion using an artificial neural network
    Cai, JP
    Cottis, RA
    Lyon, SB
    [J]. CORROSION SCIENCE, 1999, 41 (10) : 2001 - 2030
  • [10] Yield Prediction Using Artificial Neural Networks
    Baral, Seshadri
    Tripathy, Asis Kumar
    Bijayasingh, Pritiranjan
    [J]. COMPUTER NETWORKS AND INFORMATION TECHNOLOGIES, 2011, 142 : 315 - +