Prediction of ambient PM10 and toxic metals using artificial neural networks

被引:45
|
作者
Chelani, AB [1 ]
Gajghate, DG [1 ]
Hasan, MZ [1 ]
机构
[1] Natl Environm Engn Res Inst, Air Pollut Control Div, Nagpur 440020, Maharashtra, India
关键词
D O I
10.1080/10473289.2002.10470827
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, an artificial neural network is employed to predict the concentration of ambient respirable particulate matter (PM10) and toxic metals observed in the city of Jaipur, India. A feed-forward network with a back-propagation learning algorithm is used to train the neural network the behavior of the data patterns. The meteorological variables of wind speed, wind direction, relative humidity, temperature, and time are taken as input to the network. The results indicate that the network is able to predict concentrations of PM10 and toxic metals quite accurately.
引用
下载
收藏
页码:805 / 810
页数:6
相关论文
共 50 条
  • [1] Prediction of short and medium term PM10 concentration using artificial neural networks
    Schornobay-Lui, Elaine
    Alexandrina, Eduardo Carlos
    Aguiar, Monica Lopes
    Hanisch, Werner Siegfried
    Correa, Edinalda Moreira
    Correa, Nivaldo Aparecido
    MANAGEMENT OF ENVIRONMENTAL QUALITY, 2019, 30 (02) : 414 - 436
  • [2] Using Ensembles of Artificial Neural Networks to Improve PM10 Forecasts
    Souza, Romulo M. S.
    Coelho, Guilherme P.
    da Silva, Ana Estela A.
    Pozza, Simone A.
    ICHEAP12: 12TH INTERNATIONAL CONFERENCE ON CHEMICAL & PROCESS ENGINEERING, 2015, 43 : 2161 - 2166
  • [3] Forecasting Extreme PM10 Concentrations Using Artificial Neural Networks
    Nejadkoorki, F.
    Baroutian, S.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH, 2012, 6 (01) : 277 - 284
  • [4] Multivariate Prediction of PM10 Concentration by LSTM Neural Networks
    Di Antonio, Ludovico
    Rosato, Antonello
    Colaiuda, Valentina
    Lombardi, Annalina
    Tomassetti, Barbara
    Panella, Massimo
    2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2019, : 423 - 431
  • [5] ARTIFICIAL NEURAL NETWORKS FORECASTING OF THE PM10 QUANTITY IN LONDON CONSIDERING THE HARWELL AND ROCHESTER STOKE PM10 MEASUREMENTS
    Popescu, M.
    Ilie, C.
    Panaitescu, L.
    Lungu, M. -L.
    Ilie, M.
    Lungu, D.
    JOURNAL OF ENVIRONMENTAL PROTECTION AND ECOLOGY, 2013, 14 (04): : 1473 - 1481
  • [6] APPLICATION OF ARTIFICIAL NEURAL NETWORKS AND REGRESSION MODELS IN THE PREDICTION OF DAILY MAXIMUM PM10 CONCENTRATION IN DUZCE, TUKEY
    Taspinar, Fatih
    Bozkurt, Zehra
    FRESENIUS ENVIRONMENTAL BULLETIN, 2014, 23 (10): : 2450 - 2459
  • [7] PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization
    Antanasijevic, Davor Z.
    Pocajt, Viktor V.
    Povrenovic, Dragan S.
    Ristic, Mirjana D.
    Peric-Grujic, Aleksandra A.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2013, 443 : 511 - 519
  • [8] Evaluation of artificial neural networks for fine particulate pollution (PM10 and PM2.5) forecasting
    McKendry, Ian G.
    Journal of the Air and Waste Management Association, 2002, 52 (09): : 1096 - 1101
  • [9] Evaluation of artificial neural networks for fine particulate pollution (PM10 and PM2.5) forecasting
    McKendry, IG
    JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2002, 52 (09): : 1096 - 1101
  • [10] Evaluation of Key Parameters Using Deep Convolutional Neural Networks for Airborne Pollution (PM10) Prediction
    Antonio Aceves-Fernandez, Marco
    Dominguez-Guevara, Ricardo
    Carlos Pedraza-Ortega, Jesus
    Emilio Vargas-Soto, Jose
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2020, 2020