Prediction of ambient PM10 and toxic metals using artificial neural networks

被引:45
|
作者
Chelani, AB [1 ]
Gajghate, DG [1 ]
Hasan, MZ [1 ]
机构
[1] Natl Environm Engn Res Inst, Air Pollut Control Div, Nagpur 440020, Maharashtra, India
关键词
D O I
10.1080/10473289.2002.10470827
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, an artificial neural network is employed to predict the concentration of ambient respirable particulate matter (PM10) and toxic metals observed in the city of Jaipur, India. A feed-forward network with a back-propagation learning algorithm is used to train the neural network the behavior of the data patterns. The meteorological variables of wind speed, wind direction, relative humidity, temperature, and time are taken as input to the network. The results indicate that the network is able to predict concentrations of PM10 and toxic metals quite accurately.
引用
收藏
页码:805 / 810
页数:6
相关论文
共 50 条
  • [21] Forecasting PM10 in metropolitan areas: Efficacy of neural networks
    Fernando, H. J. S.
    Mammarella, M. C.
    Grandoni, G.
    Fedele, P.
    Di Marco, R.
    Dimitrova, R.
    Hyde, P.
    ENVIRONMENTAL POLLUTION, 2012, 163 : 62 - 67
  • [22] Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece
    Grivas, G
    Chaloulakou, A
    ATMOSPHERIC ENVIRONMENT, 2006, 40 (07) : 1216 - 1229
  • [23] Estimation of PM10 levels using feed forward neural networks in Igdir, Turkey
    Sahin, Fatma
    Isik, Gultekin
    Sahin, Gokhan
    Kara, Mehmet Kazim
    URBAN CLIMATE, 2020, 34
  • [24] Prediction of PM10 using Support Vector Regression
    Arampongsanuwat, Soawalak
    Meesad, Phayung
    INFORMATION AND ELECTRONICS ENGINEERING, 2011, 6 : 120 - 124
  • [25] Forecasting PM10 concentrations using neural networks and system for improving air quality
    Dedovic, Maja Muftic
    Avdakovic, Samir
    Turkovic, Irfan
    Dautbasic, Nedis
    Konjic, Tatjana
    2016 XI INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (BIHTEL), 2016,
  • [26] Corrosion rate prediction for metals in biodiesel using artificial neural networks
    Rocabruno-Valdes, C. I.
    Gonzalez-Rodriguez, J. G.
    Diaz-Blanco, Y.
    Juantorena, A. U.
    Munoz-Ledo, J. A.
    El-Hamzaoui, Y.
    Hernandez, J. A.
    RENEWABLE ENERGY, 2019, 140 : 592 - 601
  • [27] PM10 and PM2.5 concentrations in urban air and size fraction distribution of toxic metals
    D'Innocenzio, F
    Di Filippo, P
    Lepore, L
    Marconi, A
    ANNALI DI CHIMICA, 1998, 88 (3-4) : 281 - 289
  • [28] PM10 and PM2.5 Concentrations in Urban Air and Size Fraction Distribution of Toxic Metals
    D'Innocenzio, F.
    Di Filippo, P.
    Lepore, L.
    Marconi, A.
    Annali di Chimica, 88 (3-4):
  • [29] Assessment of ambient air PM10 and PM2.5 and characterization of PM10 in the city of Kanpur, India
    Sharma, M
    Maloo, S
    ATMOSPHERIC ENVIRONMENT, 2005, 39 (33) : 6015 - 6026
  • [30] Assessment of selected metals in the ambient air PM10 in urban sites of Bangkok (Thailand)
    Siwatt Pongpiachan
    Akihiro Iijima
    Environmental Science and Pollution Research, 2016, 23 : 2948 - 2961