Upper bounds of blow-up time and blow-up rate for a semi-linear edge-degenerate parabolic equation

被引:6
|
作者
Xu, Guangyu [1 ]
Zhou, Jun [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国博士后科学基金;
关键词
Semi-linear edge-degenerate; parabolic equation; Blow-up time; Blow-up rate; POSITIVE INITIAL ENERGY; THIN-FILM EQUATION; VARIABLE SOURCE;
D O I
10.1016/j.aml.2017.04.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper gives the upper bounds of blow-up time and blow-up rate for a semi-linear edge-degenerate parabolic equation, and the results extend the results of a recent paper Chen and Liu (2016). (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [31] BLOW-UP AND BLOW-UP RATE FOR A COUPLED SEMILINEAR PARABOLIC SYSTEM WITH NONLOCAL BOUNDARIES
    Zhengqiu Ling
    Annals of Differential Equations, 2013, 29 (02) : 151 - 158
  • [32] Uniform blow-up rate for a nonlocal degenerate parabolic equations
    Liu Qilin
    Li Yuxiang
    Gao Hongjun
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (04) : 881 - 889
  • [33] Blow-up for degenerate nonlinear parabolic problem
    Chan, W. Y.
    AIMS MATHEMATICS, 2019, 4 (05): : 1488 - 1498
  • [34] Bounds on blow-up time for a pseudo-parabolic equation with a memory term
    Lyu, Wenbin
    Tian, Shuying
    Zhan, Jinpeng
    APPLICABLE ANALYSIS, 2025,
  • [35] Bounds for the Blow-Up Time on the Pseudo-Parabolic Equation with Nonlocal Term
    Long, Qunfei
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2020, 33 (03): : 222 - 234
  • [36] Upper estimates for blow-up solutions of a quasi-linear parabolic equation
    Anada, Koichi
    Ishiwata, Tetsuya
    Ushijima, Takeo
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2024, 41 (01) : 381 - 405
  • [37] Upper estimates for blow-up solutions of a quasi-linear parabolic equation
    Koichi Anada
    Tetsuya Ishiwata
    Takeo Ushijima
    Japan Journal of Industrial and Applied Mathematics, 2024, 41 : 381 - 405
  • [38] Lower bounds for blow-up time in a nonlinear parabolic problem
    Payne, L. E.
    Song, J. C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 354 (01) : 394 - 396
  • [39] BLOW-UP OF A DEGENERATE NON-LINEAR HEAT EQUATION
    Poon, Chi-Cheung
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (03): : 1201 - 1225
  • [40] A numerical simulation for the blow-up of semi-linear diffusion equations
    De la Hoz, F.
    Vadillo, F.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (03) : 493 - 502