On (k,p)-Fibonacci Numbers

被引:8
|
作者
Bednarz, Natalia [1 ]
机构
[1] Rzeszow Univ Technol, Fac Math & Appl Phys, Al Powstancow Warszawy 12, PL-35959 Rzeszow, Poland
关键词
Fibonacci numbers; Pell numbers; Narayana numbers;
D O I
10.3390/math9070727
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce and study a new two-parameters generalization of the Fibonacci numbers, which generalizes Fibonacci numbers, Pell numbers, and Narayana numbers, simultaneously. We prove some identities which generalize well-known relations for Fibonacci numbers, Pell numbers and their generalizations. A matrix representation for generalized Fibonacci numbers is given, too.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Diophantine equation with weighted k-Fibonacci numbers
    Gueth, K.
    Szalay, L.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (01): : 48 - 62
  • [42] Repdigits as sums of two k-Fibonacci numbers
    Bravo, Jhon J.
    Luca, Florian
    MONATSHEFTE FUR MATHEMATIK, 2015, 176 (01): : 31 - 51
  • [43] DISTRIBUTION OF THE FIBONACCI NUMBERS MOD 2K
    JACOBSON, ET
    FIBONACCI QUARTERLY, 1992, 30 (03): : 211 - 215
  • [44] HOW MANY FIBONACCI NUMBERS ARE THERE WITH K-PLACES
    GUTHMANN, A
    ARCHIV DER MATHEMATIK, 1992, 59 (04) : 334 - 340
  • [45] On k-Fibonacci and k-Lucas numbers written as a product of two Pell numbers
    Rihane, Salah Eddine
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (01):
  • [46] ON THE LARGEST PRIME FACTOR OF THE k-FIBONACCI NUMBERS
    Bravo, Jhon J.
    Luca, Florian
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (05) : 1351 - 1366
  • [47] Binomial Transform of the Generalized k-Fibonacci Numbers
    Falcon, Sergio
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (03): : 643 - 651
  • [48] An Equation Related to k-Generalized Fibonacci Numbers
    Marques, Diego
    Trojovsky, Pavel
    UTILITAS MATHEMATICA, 2016, 101 : 79 - 89
  • [49] Catalan Identity for the k-Fibonacci Numbers Proposal
    Plaza, Angel
    Falcon, Sergio
    FIBONACCI QUARTERLY, 2019, 57 (02): : 177 - 177
  • [50] Dual-complex k-Fibonacci numbers
    Aydin, Fugen Torunbalci
    CHAOS SOLITONS & FRACTALS, 2018, 115 : 1 - 6