Electron ptychography achieves atomic-resolution limits set by lattice vibrations

被引:201
|
作者
Chen, Zhen [1 ]
Jiang, Yi [2 ]
Shao, Yu-Tsun [1 ]
Holtz, Megan E. [3 ,7 ]
Odstrcil, Michal [4 ,8 ]
Guizar-Sicairos, Manuel [4 ]
Hanke, Isabelle [5 ]
Ganschow, Steffen [5 ]
Schlom, Darrell G. [3 ,5 ,6 ]
Muller, David A. [1 ,6 ]
机构
[1] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA
[2] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA
[3] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[4] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[5] Leibniz Inst Kristallzuchtung, Max Born Str 2, D-12489 Berlin, Germany
[6] Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA
[7] Colorado Sch Mines, Departure Met & Mat Engn, Golden, CO 80401 USA
[8] Carl Zeiss SMT, Carl Zeiss Str 22, D-73447 Oberkochen, Germany
基金
美国国家科学基金会;
关键词
X-RAY; TRANSMISSION MICROSCOPY; DIFFRACTION; ORTHOSCANDATE; SCATTERING; DETECTOR; DEPTH;
D O I
10.1126/science.abg2533
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transmission electron microscopes use electrons with wavelengths of a few picometers, potentially capable of imaging individual atoms in solids at a resolution ultimately set by the intrinsic size of an atom. However, owing to lens aberrations and multiple scattering of electrons in the sample, the image resolution is reduced by a factor of 3 to 10. By inversely solving the multiple scattering problem and overcoming the electron-probe aberrations using electron ptychography, we demonstrate an instrumental blurring of less than 20 picometers and a linear phase response in thick samples. The measured widths of atomic columns are limited by thermal fluctuations of the atoms. Our method is also capable of locating embedded atomic dopant atoms in all three dimensions with subnanometer precision from only a single projection measurement.
引用
收藏
页码:826 / +
页数:41
相关论文
共 50 条
  • [21] Atomic-Resolution Imaging of Halide Perovskites Using Electron Microscopy
    Song, Kepeng
    Liu, Lingmei
    Zhang, Daliang
    Hautzinger, Matthew P.
    Jin, Song
    Han, Yu
    ADVANCED ENERGY MATERIALS, 2020, 10 (26)
  • [22] Electron diffractive imaging of the MgO nanoparticle: Towards atomic-resolution
    Dronyak, Roman V.
    Fong, Chi-Kai
    Liang, Keng S.
    Chen, Fu-Rong
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2008, 64 : C130 - C130
  • [23] Modeling atomic-resolution scanning transmission electron microscopy images
    Findlay, Scott D.
    Xley, Mark P.
    Allen, Leslie J.
    MICROSCOPY AND MICROANALYSIS, 2008, 14 (01) : 48 - 59
  • [24] High dose efficiency atomic resolution imaging via electron ptychography
    Pennycook, Timothy J.
    Martinez, Gerardo T.
    Nellist, Peter D.
    Meyer, Jannik C.
    ULTRAMICROSCOPY, 2019, 196 : 131 - 135
  • [25] Atomic Resolution Defocused Electron Ptychography at Low Dose with a Fast, Direct Electron Detector
    Song, Jiamei
    Allen, Christopher S.
    Gao, Si
    Huang, Chen
    Sawada, Hidetaka
    Pan, Xiaoqing
    Warner, Jamie
    Wang, Peng
    Kirkland, Angus, I
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [26] Atomic Resolution Defocused Electron Ptychography at Low Dose with a Fast, Direct Electron Detector
    Jiamei Song
    Christopher S. Allen
    Si Gao
    Chen Huang
    Hidetaka Sawada
    Xiaoqing Pan
    Jamie Warner
    Peng Wang
    Angus I. Kirkland
    Scientific Reports, 9
  • [27] Perspective on atomic-resolution vibrational electron energy-loss spectroscopy
    Haas, Benedikt
    Koch, Christoph T.
    Rez, Peter
    APPLIED PHYSICS LETTERS, 2024, 125 (15)
  • [28] ATOMIC-RESOLUTION ELECTRON-ENERGY-LOSS SPECTROSCOPY IN CRYSTALLINE SOLIDS
    PENNYCOOK, SJ
    JESSON, DE
    BROWNING, ND
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1995, 96 (3-4): : 575 - 582
  • [30] 'Big Bang' tomography as a new route to atomic-resolution electron tomography
    Van Dyck, Dirk
    Chen, Fu-Rong
    NATURE, 2012, 486 (7402) : 243 - 246