Electron ptychography achieves atomic-resolution limits set by lattice vibrations

被引:201
|
作者
Chen, Zhen [1 ]
Jiang, Yi [2 ]
Shao, Yu-Tsun [1 ]
Holtz, Megan E. [3 ,7 ]
Odstrcil, Michal [4 ,8 ]
Guizar-Sicairos, Manuel [4 ]
Hanke, Isabelle [5 ]
Ganschow, Steffen [5 ]
Schlom, Darrell G. [3 ,5 ,6 ]
Muller, David A. [1 ,6 ]
机构
[1] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA
[2] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA
[3] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[4] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[5] Leibniz Inst Kristallzuchtung, Max Born Str 2, D-12489 Berlin, Germany
[6] Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA
[7] Colorado Sch Mines, Departure Met & Mat Engn, Golden, CO 80401 USA
[8] Carl Zeiss SMT, Carl Zeiss Str 22, D-73447 Oberkochen, Germany
基金
美国国家科学基金会;
关键词
X-RAY; TRANSMISSION MICROSCOPY; DIFFRACTION; ORTHOSCANDATE; SCATTERING; DETECTOR; DEPTH;
D O I
10.1126/science.abg2533
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transmission electron microscopes use electrons with wavelengths of a few picometers, potentially capable of imaging individual atoms in solids at a resolution ultimately set by the intrinsic size of an atom. However, owing to lens aberrations and multiple scattering of electrons in the sample, the image resolution is reduced by a factor of 3 to 10. By inversely solving the multiple scattering problem and overcoming the electron-probe aberrations using electron ptychography, we demonstrate an instrumental blurring of less than 20 picometers and a linear phase response in thick samples. The measured widths of atomic columns are limited by thermal fluctuations of the atoms. Our method is also capable of locating embedded atomic dopant atoms in all three dimensions with subnanometer precision from only a single projection measurement.
引用
收藏
页码:826 / +
页数:41
相关论文
共 50 条
  • [1] Deterministic electron ptychography at atomic resolution
    D'Alfonso, A. J.
    Morgan, A. J.
    Yan, A. W. C.
    Wang, P.
    Sawada, H.
    Kirkland, A. I.
    Allen, L. J.
    PHYSICAL REVIEW B, 2014, 89 (06)
  • [2] Quantitative atomic-resolution electron microscopy
    Myridis, Nikolaos E.
    CONTEMPORARY PHYSICS, 2022, 63 (01) : 67 - 69
  • [3] Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures
    Yang, H.
    Rutte, R. N.
    Jones, L.
    Simson, M.
    Sagawa, R.
    Ryll, H.
    Huth, M.
    Pennycook, T. J.
    Green, M. L. H.
    Soltau, H.
    Kondo, Y.
    Davis, B. G.
    Nellist, P. D.
    NATURE COMMUNICATIONS, 2016, 7
  • [4] Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures
    H. Yang
    R. N. Rutte
    L. Jones
    M. Simson
    R. Sagawa
    H. Ryll
    M. Huth
    T. J. Pennycook
    M.L.H. Green
    H. Soltau
    Y. Kondo
    B. G. Davis
    P. D. Nellist
    Nature Communications, 7
  • [5] Progress & perspectives for atomic-resolution electron microscopy
    Smith, David J.
    MATERIALS TODAY, 2010, 12 : 10 - 16
  • [6] Progress and perspectives for atomic-resolution electron microscopy
    Smith, David J.
    ULTRAMICROSCOPY, 2008, 108 (03) : 159 - 166
  • [7] Is science prepared for atomic-resolution electron microscopy?
    Urban, Knut W.
    NATURE MATERIALS, 2009, 8 (04) : 260 - 262
  • [8] Is science prepared for atomic-resolution electron microscopy?
    Knut W. Urban
    Nature Materials, 2009, 8 : 260 - 262
  • [9] Progress and problems for atomic-resolution electron microscopy
    Smith, David J.
    MICRON, 2012, 43 (04) : 504 - 508
  • [10] APPROACHING ATOMIC-RESOLUTION ELECTRON-MICROSCOPY
    SMITH, DJ
    CAMPS, RA
    FREEMAN, LA
    OKEEFE, MA
    SAXTON, WO
    WOOD, GJ
    ULTRAMICROSCOPY, 1985, 18 (1-4) : 63 - 75