Parallel genetics of regulatory sequences using scalable genome editing in vivo

被引:6
|
作者
Froehlich, Jonathan J. [1 ]
Uyar, Bora [2 ]
Herzog, Margareta [1 ]
Theil, Kathrin [1 ]
Glazar, Petar [1 ]
Akalin, Altuna [2 ]
Rajewsky, Nikolaus [1 ]
机构
[1] Max Delbruck Ctr Mol Med Helmholtz Assoc, Berlin Inst Med Syst Biol, Syst Biol Gene Regulatory Elements, Hannoversche Str 28, D-10115 Berlin, Germany
[2] Max Delbruck Ctr Mol Med Helmholtz Assoc, Berlin Inst Med Syst Biol, Bioinformat & Omics Data Sci Platform, Hannoversche Str 28, D-10115 Berlin, Germany
来源
CELL REPORTS | 2021年 / 35卷 / 02期
关键词
CAENORHABDITIS-ELEGANS; C; ELEGANS; RNA; LET-7; EVOLUTION; TRANSGENESIS; ARCHITECTURE; MUTAGENESIS; EXPRESSION; DISCOVERY;
D O I
10.1016/j.celrep.2021.108988
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
How regulatory sequences control gene expression is fundamental for explaining phenotypes in health and disease. Regulatory elements must ultimately be understood within their genomic environment and development-or tissue-specific contexts. Because this is technically challenging, few regulatory elements have been characterized in vivo. Here, we use inducible Cas9 and multiplexed guide RNAs to create hundreds of mutations in enhancers/promoters and 3' UTRs of 16 genes in C. elegans. Our software crispr-DART analyzes indel mutations in targeted DNA sequencing. We quantify the impact of mutations on expression and fitness by targeted RNA sequencing and DNA sampling. When applying our approach to the lin-41 3' UTR, generating hundreds of mutants, we find that the two adjacent binding sites for the miRNA let-7 can regulate lin-41 expression independently of each other. Finally, we map regulatory genotypes to phenotypic traits for several genes. Our approach enables parallel analysis of regulatory sequences directly in animals.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Genome editing for disease locus dissection DISEASE GENETICS
    Burgess, Darren J.
    NATURE REVIEWS GENETICS, 2019, 20 (02) : 67 - 67
  • [32] TF-High-Evolutionary: In Vivo Mutagenesis of Gene Regulatory Networks for the Study of the Genetics and Evolution of the Drosophila Regulatory Genome
    Li, Xueying C.
    Srinivasan, Vani
    Laiker, Ian
    Misunou, Natalia
    Frankel, Nicolas
    Pallares, Luisa F.
    Crocker, Justin
    MOLECULAR BIOLOGY AND EVOLUTION, 2024, 41 (08)
  • [33] First in vivo human genome editing trial
    不详
    NATURE BIOTECHNOLOGY, 2018, 36 (01) : 5 - 5
  • [34] Correction of cardiac arrhythmia by in vivo genome editing
    Alford, Raye
    GENETICS IN MEDICINE, 2019, 21 (01) : 2 - 2
  • [35] Regenerative medicine: targeted genome editing in vivo
    Lixia Wang
    Jun Wu
    Weiwei Fang
    Guang-Hui Liu
    Juan Carlos Izpisua Belmonte
    Cell Research, 2015, 25 : 271 - 272
  • [36] Unlocking loxP to Track Genome Editing In Vivo
    Gendron, William A. C.
    Rubin, Jeffrey D.
    Hansen, Michael J.
    Nace, Rebecca A.
    Simone, Brandon W.
    Ekker, Stephen C.
    Barry, Michael A.
    GENES, 2021, 12 (08)
  • [37] Strategies for In Vivo Genome Editing in Nondividing Cells
    Nami, Fatemeharefeh
    Basiri, Mohsen
    Satarian, Leila
    Curtiss, Cameron
    Baharvand, Hossein
    Verfaillie, Catherine
    TRENDS IN BIOTECHNOLOGY, 2018, 36 (08) : 770 - 786
  • [38] First in vivo human genome editing trial
    Nature Biotechnology, 2018, 36 : 5 - 5
  • [39] In vivo genome editing shows promise for diseases
    Yan, Ziying
    MOLECULAR THERAPY, 2023, 31 (12) : 3361 - 3361
  • [40] Regenerative medicine: targeted genome editing in vivo
    Wang, Lixia
    Wu, Jun
    Fang, Weiwei
    Liu, Guang-Hui
    Belmonte, Juan Carlos Izpisua
    CELL RESEARCH, 2015, 25 (03) : 271 - 272