Parallel genetics of regulatory sequences using scalable genome editing in vivo

被引:6
|
作者
Froehlich, Jonathan J. [1 ]
Uyar, Bora [2 ]
Herzog, Margareta [1 ]
Theil, Kathrin [1 ]
Glazar, Petar [1 ]
Akalin, Altuna [2 ]
Rajewsky, Nikolaus [1 ]
机构
[1] Max Delbruck Ctr Mol Med Helmholtz Assoc, Berlin Inst Med Syst Biol, Syst Biol Gene Regulatory Elements, Hannoversche Str 28, D-10115 Berlin, Germany
[2] Max Delbruck Ctr Mol Med Helmholtz Assoc, Berlin Inst Med Syst Biol, Bioinformat & Omics Data Sci Platform, Hannoversche Str 28, D-10115 Berlin, Germany
来源
CELL REPORTS | 2021年 / 35卷 / 02期
关键词
CAENORHABDITIS-ELEGANS; C; ELEGANS; RNA; LET-7; EVOLUTION; TRANSGENESIS; ARCHITECTURE; MUTAGENESIS; EXPRESSION; DISCOVERY;
D O I
10.1016/j.celrep.2021.108988
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
How regulatory sequences control gene expression is fundamental for explaining phenotypes in health and disease. Regulatory elements must ultimately be understood within their genomic environment and development-or tissue-specific contexts. Because this is technically challenging, few regulatory elements have been characterized in vivo. Here, we use inducible Cas9 and multiplexed guide RNAs to create hundreds of mutations in enhancers/promoters and 3' UTRs of 16 genes in C. elegans. Our software crispr-DART analyzes indel mutations in targeted DNA sequencing. We quantify the impact of mutations on expression and fitness by targeted RNA sequencing and DNA sampling. When applying our approach to the lin-41 3' UTR, generating hundreds of mutants, we find that the two adjacent binding sites for the miRNA let-7 can regulate lin-41 expression independently of each other. Finally, we map regulatory genotypes to phenotypic traits for several genes. Our approach enables parallel analysis of regulatory sequences directly in animals.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] A Catalog of Regulatory Sequences for Trait Gene for the Genome Editing of Wheat
    Makai, Szabolcs
    Tamas, Laszlo
    Juhasz, Angela
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [2] Directed livestock genetics by genome editing
    Fahrenkrug, S.
    TRANSGENIC RESEARCH, 2014, 23 (01) : 188 - 188
  • [3] Translating human genetics into mouse: The impact of ultra-rapid in vivo genome editing
    Aida, Tomomi
    Imahashi, Risa
    Tanaka, Kohichi
    DEVELOPMENT GROWTH & DIFFERENTIATION, 2014, 56 (01) : 34 - 45
  • [4] In vivo Genome Editing for Vision
    Kim, J.
    CYTOTHERAPY, 2020, 22 (05) : S22 - S23
  • [5] Ex vivo and in vivo genome editing: a regulatory scientific framework from early development to clinical implementation
    Bachtarzi, Houria
    REGENERATIVE MEDICINE, 2017, 12 (08) : 1015 - 1030
  • [6] Therapeutic genome editing: regulatory horizons
    Philip A. Hines
    Eleonora Agricola
    Jordi Llinares Garcia
    Laurence O’Dwyer
    Ralf Herold
    Nature Reviews Drug Discovery, 2022, 21 : 1 - 2
  • [7] Regulatory uncertainty over genome editing
    Huw D. Jones
    Nature Plants, 1 (1)
  • [8] Therapeutic genome editing: regulatory horizons
    Hines, Philip A.
    Agricola, Eleonora
    Llinares Garcia, Jordi
    O'Dwyer, Laurence
    Herold, Ralf
    NATURE REVIEWS DRUG DISCOVERY, 2022, 21 (01) : 1 - 2
  • [9] Genome editing for scalable production of alloantigen-free lentiviral vectors for in vivo gene therapy
    Milani, Michela
    Annoni, Andrea
    Bartolaccini, Sara
    Biffi, Mauro
    Russo, Fabio
    Di Tomaso, Tiziano
    Raimondi, Andrea
    Lengler, Johannes
    Holmes, Michael C.
    Scheiflinger, Friedrich
    Lombardo, Angelo
    Cantore, Alessio
    Naldini, Luigi
    EMBO MOLECULAR MEDICINE, 2017, 9 (11) : 1558 - 1573
  • [10] Ethical and regulatory aspects of genome editing
    Kohn, Donald B.
    Porteus, Matthew H.
    Scharenberg, Andrew M.
    BLOOD, 2016, 127 (21) : 2553 - 2560