On-Device Mobile Phone Security Exploits Machine Learning

被引:10
|
作者
Islam, Nayeem [1 ]
Das, Saumitra [1 ]
Chen, Yin [1 ]
机构
[1] Qualcomm, Santa Clara, CA 95051 USA
关键词
hackers; malware; mobile; networking; pervasive computing; security;
D O I
10.1109/MPRV.2017.26
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The authors present a novel approach to protecting mobile devices from malware that might leak private information or exploit vulnerabilities. The approach, which can also keep devices from connecting to malicious access points, uses learning techniques to statically analyze apps, analyze the behavior of apps at runtime, and monitor the way devices associate with Wi-Fi access points. © 2017 IEEE.
引用
收藏
页码:92 / 96
页数:5
相关论文
共 50 条
  • [21] FlexDNN: Input-Adaptive On-Device Deep Learning for Efficient Mobile Vision
    Fang, Biyi
    Zeng, Xiao
    Zhang, Faen
    Xu, Hui
    Zhang, Mi
    2020 IEEE/ACM SYMPOSIUM ON EDGE COMPUTING (SEC 2020), 2020, : 84 - 95
  • [22] Accelerated Machine Learning for On-Device Hardware-Assisted Cybersecurity in Edge Platforms
    Makrani, Hosein Mohammadi
    He, Zhangying
    Rafatirad, Setareh
    Sayadi, Hossein
    PROCEEDINGS OF THE TWENTY THIRD INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN (ISQED 2022), 2022, : 77 - 83
  • [23] GPU-based Private Information Retrieval for On-Device Machine Learning Inference
    Lam, Maximilian
    Johnson, Jeff
    Xiong, Wenjie
    Maeng, Kiwan
    Gupta, Udit
    Li, Yang
    Lai, Liangzhen
    Leontiadis, Ilias
    Rhu, Minsoo
    Lee, Hsien-Hsin S.
    Reddi, Vijay Janapa
    Wei, Gu-Yeon
    Brooks, David
    Suh, G. Edward
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, ASPLOS 2024, VOL 1, 2024, : 197 - 214
  • [24] On-Device Tiny Machine Learning for Anomaly Detection Based on the Extreme Values Theory
    Pereira, Eduardo S.
    Marcondes, Leonardo S.
    Silva, Josemar M.
    IEEE MICRO, 2023, 43 (06) : 58 - 65
  • [25] Talos App: On-device Machine Learning Using TensorFlow to Detect Android Malware
    Takawale, Harshvardhan C.
    Thakur, Abhishek
    2018 FIFTH INTERNATIONAL CONFERENCE ON INTERNET OF THINGS: SYSTEMS, MANAGEMENT AND SECURITY, 2018, : 250 - 255
  • [26] Lightweight On-Device Detection of Android Malware Based on the Koodous Platform and Machine Learning
    Krzyszton, Mateusz
    Bok, Bartosz
    Lew, Marcin
    Sikora, Andrzej
    SENSORS, 2022, 22 (17)
  • [27] MOBILE PHONE AS A MEASURING DEVICE
    Kondic, Veljko
    Horvat, Marko
    TEHNICKI GLASNIK-TECHNICAL JOURNAL, 2013, 7 (03): : 240 - 246
  • [28] Mobile phone and wearable device
    Kurakake, Shoji
    Journal of the Institute of Image Electronics Engineers of Japan, 2015, 44 (02) : 316 - 322
  • [29] On-Device Learning with Binary Neural Networks
    Vorabbi, Lorenzo
    Maltoni, Davide
    Santi, Stefano
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2023 WORKSHOPS, PT I, 2024, 14365 : 39 - 50
  • [30] DeepRec: On-device Deep Learning for Privacy-Preserving Sequential Recommendation in Mobile Commerce
    Han, Jialiang
    Ma, Yun
    Mei, Qiaozhu
    Liu, Xuanzhe
    PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 900 - 911