Medical Image Search and Retrieval using Local Binary Patterns and KLT Feature Points

被引:0
|
作者
Unay, Devrim [1 ]
Ekin, Ahmet [1 ]
Jasinschi, Radu S. [1 ]
机构
[1] Philips Res Europe, Video Proc & Anal Grp, NL-5656 AE Eindhoven, Netherlands
来源
2009 IEEE 17TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, VOLS 1 AND 2 | 2009年
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In the medical domain, experts usually look at specific anatomical structures to identify the cause of a pathology, and therefore they can largely benefit from automated tools that retrieve relevant slice(s) from a patient's image volume in diagnosis. Accordingly, this paper introduces a novel search and retrieval work for finding relevant slices in brain MR (magnetic resonance) volumes. As intensity is non-standard in AIR we explore performance of two complementary intensity., invariant features, local binary patterns and Kanade-Lucas-Tomasi feature points, their extended versions with spatial context, and a simple edge descriptor with spatial context. Experiments on real and simulated data showed that the local binary patterns with spatial context is fast, highly accurate, and robust to geometric deformations and intensity variations.
引用
收藏
页码:279 / 282
页数:4
相关论文
共 50 条
  • [41] Local Feature Selection for Urban Image Retrieval
    Hascoet, Nicolas
    Zaharia, Titus
    2017 INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS (ISSCS), 2017,
  • [42] Aggregating binary local descriptors for image retrieval
    Amato, Giuseppe
    Falchi, Fabrizio
    Vadicamo, Lucia
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (05) : 5385 - 5415
  • [43] Aggregating binary local descriptors for image retrieval
    Giuseppe Amato
    Fabrizio Falchi
    Lucia Vadicamo
    Multimedia Tools and Applications, 2018, 77 : 5385 - 5415
  • [44] Local fractallity as a feature in database image retrieval
    Crisan, Daniela Alexandra
    Coculescu, Cristina
    Stanica, Justina Lavinia
    Samuel, Adam Nelu Altar
    2009 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 2, 2009, : 114 - 117
  • [45] Local tri-directional patterns: A new texture feature descriptor for image retrieval
    Verma, Manisha
    Raman, Balasubramanian
    DIGITAL SIGNAL PROCESSING, 2016, 51 : 62 - 72
  • [46] Incorporating Spatial Distribution Feature with Local Patterns for Content-Based Image Retrieval
    WAN Shouhong
    JIN Peiquan
    XIA Yu
    YUE Lihua
    Chinese Journal of Electronics, 2016, 25 (05) : 873 - 879
  • [47] Incorporating Spatial Distribution Feature with Local Patterns for Content-Based Image Retrieval
    Wan Shouhong
    Jin Peiquan
    Xia Yu
    Yue Lihua
    CHINESE JOURNAL OF ELECTRONICS, 2016, 25 (05) : 873 - 879
  • [48] Local maximum edge binary patterns: A new descriptor for image retrieval and object tracking
    Subrahmanyam, M.
    Maheshwari, R. P.
    Balasubramanian, R.
    SIGNAL PROCESSING, 2012, 92 (06) : 1467 - 1479
  • [49] The medical image retrieval based on the fuzzy feature
    Li, Jin
    Liang, Hong
    Wang, Lei
    Zhang, Jingnan
    2007 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, VOLS I-V, CONFERENCE PROCEEDINGS, 2007, : 1245 - 1250
  • [50] Local Tetra Patterns: A New Feature Descriptor for Content-Based Image Retrieval
    Murala, Subrahmanyam
    Maheshwari, R. P.
    Balasubramanian, R.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (05) : 2874 - 2886