Magnetic Frustration in an Iron-Based Cairo Pentagonal Lattice

被引:135
|
作者
Ressouche, E. [1 ]
Simonet, V. [4 ,5 ]
Canals, B. [4 ,5 ]
Gospodinov, M. [6 ]
Skumryev, V. [2 ,3 ]
机构
[1] CEA Grenoble, INAC SPSMS MDN, F-38054 Grenoble 9, France
[2] ICREA, Bellaterra 08193, Spain
[3] Univ Autonoma Barcelona, Dept Fis, Bellaterra 08193, Spain
[4] CNRS, Inst Neel, F-38042 Grenoble 9, France
[5] Univ Grenoble 1, F-38042 Grenoble 9, France
[6] Bulgarian Acad Sci, Inst Solid State Phys, BU-1184 Sofia, Bulgaria
关键词
DIFFRACTION;
D O I
10.1103/PhysRevLett.103.267204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Fe(3+) lattice in the Bi(2)Fe(4)O(9) compound is found to materialize the first analogue of a magnetic pentagonal lattice. Because of its odd number of bonds per elemental brick, this lattice, subject to first neighbor antiferromagnetic interactions, is prone to geometric frustration. The Bi(2)Fe(4)O(9) magnetic properties have been investigated by macroscopic magnetic measurements and neutron diffraction. The observed noncollinear magnetic arrangement is related to the one stabilized on a perfect tiling as obtained from a mean field analysis with direct space magnetic configuration calculations. The peculiarity of this structure arises from the complex connectivity of the pentagonal lattice, a novel feature compared to the well-known case of triangle-based lattices.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Magnetic frustration in a metallic fcc lattice
    Stockert, Oliver
    Hoffmann, Jens-Uwe
    Muehlbauer, Martin
    Senyshyn, Anatoliy
    Koza, Michael M.
    Tsirlin, Alexander A.
    Wolf, F. Maximilian
    Bachus, Sebastian
    Gegenwart, Philipp
    Movshovich, Roman
    Bobev, Svilen
    Fritsch, Veronika
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [22] NONCOLLINEAR MAGNETIC-STRUCTURES IN AMORPHOUS IRON AND IRON-BASED ALLOYS
    LORENZ, R
    HAFNER, J
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1995, 139 (1-2) : 209 - 227
  • [23] Magnetic penetration depth in disordered iron-based superconductors
    Dzero, M.
    Khodas, M.
    Klironomos, A. D.
    Vavilov, M. G.
    Levchenko, A.
    PHYSICAL REVIEW B, 2015, 92 (14)
  • [24] Unified Picture for Magnetic Correlations in Iron-Based Superconductors
    Yin, Wei-Guo
    Lee, Chi-Cheng
    Ku, Wei
    PHYSICAL REVIEW LETTERS, 2010, 105 (10)
  • [25] Chemical, structural, and magnetic trends in iron-based superconductors
    Rodriguez, Efrain
    Stock, Chris
    Green, Mark A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [26] Iron-based magnetic nanoparticles for multimodal hyperthermia heating
    Xing, M.
    Mohapatra, Jeotikanta
    Beatty, J.
    Elkins, J.
    Pandey, Nil Kanatha
    Chalise, A.
    Chen, W.
    Jin, M.
    Liu, J. Ping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 871
  • [27] Structure and magnetic properties of iron-based cyanide compounds
    Ding, J
    Ng, CW
    Shi, Y
    IEEE TRANSACTIONS ON MAGNETICS, 2001, 37 (04) : 2938 - 2940
  • [28] Nanocrystalline films of soft magnetic iron-based alloys
    Sheftel' E.N.
    Bannykh O.A.
    Russian Metallurgy (Metally), 2006, 2006 (5) : 394 - 399
  • [29] Magnetic Properties of Iron-Based Amorphous Metal Wires
    A. A. Gavrilyuk
    A. L. Semenov
    A. V. Gavrilyuk
    A. Yu. Mokhovikov
    S. M. Zubritsky
    A. L. Petrov
    Russian Physics Journal, 2004, 47 (7) : 750 - 755
  • [30] Magnetic properties of the superconducting state of iron-based superconductors
    Seo, Kangjun
    Fang, Chen
    Bernevig, B. Andrei
    Hu, Jiangping
    PHYSICAL REVIEW B, 2009, 79 (23):