Predicting types of protein-protein interactions using a multiple-instance learning model

被引:0
|
作者
Yamakawa, Hiroshi [1 ]
Maruhashi, Koji [1 ]
Nakao, Yoshio [1 ]
机构
[1] Fujitsu Labs Ltd, Nakahara Ku, 1-1 Kamikodanaka 4 Chome, Kawasaki, Kanagawa 2118588, Japan
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a method for predicting types of protein-protein interactions using a multiple-instance learning (MIL) model. Given an interaction type to be predicted, the MIL model was trained using interaction data collected from biological pathways, where positive bags were constructed from interactions between protein complexes of that type, and negative bags from those of other types. In an experiment using the KEGG pathways and the Gene Ontology, the method successfully predicted an interaction type (phosphorylation) to an accuracy rate of 86.1%.
引用
收藏
页码:42 / 53
页数:12
相关论文
共 50 条
  • [21] MULTIPLE-INSTANCE LEARNING WITH PAIRWISE INSTANCE SIMILARITY
    Yuan, Liming
    Liu, Jiafeng
    Tang, Xianglong
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2014, 24 (03) : 567 - 577
  • [22] Salient Instance Selection for Multiple-Instance Learning
    Yuan, Liming
    Liu, Songbo
    Huang, Qingcheng
    Liu, Jiafeng
    Tang, Xianglong
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT III, 2012, 7665 : 58 - 67
  • [23] Using inductive logic programming for predicting protein-protein interactions from multiple genomic data
    Tran, TN
    Satou, K
    Ho, TB
    KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2005, 2005, 3721 : 321 - 330
  • [24] A Method for Predicting Protein-Protein Interaction Types
    Silberberg, Yael
    Kupiec, Martin
    Sharan, Roded
    PLOS ONE, 2014, 9 (03):
  • [25] Predicting the protein-protein interactions using primary structures with predicted protein surface
    Chang, Darby Tien-Hao
    Syu, Yu-Tang
    Lin, Po-Chang
    BMC BIOINFORMATICS, 2010, 11
  • [26] Predicting the protein-protein interactions using primary structures with predicted protein surface
    Darby Tien-Hao Chang
    Yu-Tang Syu
    Po-Chang Lin
    BMC Bioinformatics, 11
  • [27] Predicting protein-protein interactions in the context of protein evolution
    Lewis, Anna C. F.
    Saeed, Ramazan
    Deane, Charlotte M.
    MOLECULAR BIOSYSTEMS, 2010, 6 (01) : 55 - 64
  • [28] Predicting protein-protein interactions from protein sequences using meta predictor
    Xia, Jun-Feng
    Zhao, Xing-Ming
    Huang, De-Shuang
    AMINO ACIDS, 2010, 39 (05) : 1595 - 1599
  • [29] A High Efficient Biological Language Model for Predicting Protein-Protein Interactions
    Wang, Yanbin
    You, Zhu-Hong
    Yang, Shan
    Li, Xiao
    Jiang, Tong-Hai
    Zhou, Xi
    CELLS, 2019, 8 (02)
  • [30] Multiclass Multiple-Instance Learning for Predicting Precursors to Aviation Safety Events
    Laine, Marc-Henri Bleu
    Puranik, Tejas G.
    Mavris, Dimitri N.
    Matthews, Bryan
    JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2022, 19 (01): : 22 - 36