Predicting types of protein-protein interactions using a multiple-instance learning model

被引:0
|
作者
Yamakawa, Hiroshi [1 ]
Maruhashi, Koji [1 ]
Nakao, Yoshio [1 ]
机构
[1] Fujitsu Labs Ltd, Nakahara Ku, 1-1 Kamikodanaka 4 Chome, Kawasaki, Kanagawa 2118588, Japan
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a method for predicting types of protein-protein interactions using a multiple-instance learning (MIL) model. Given an interaction type to be predicted, the MIL model was trained using interaction data collected from biological pathways, where positive bags were constructed from interactions between protein complexes of that type, and negative bags from those of other types. In an experiment using the KEGG pathways and the Gene Ontology, the method successfully predicted an interaction type (phosphorylation) to an accuracy rate of 86.1%.
引用
收藏
页码:42 / 53
页数:12
相关论文
共 50 条
  • [1] Predicting protein-protein interactions by a supervised learning classifier
    Huang, Y
    Frishman, D
    Muchnik, I
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2004, 28 (04) : 291 - 301
  • [2] Machine learning solutions for predicting protein-protein interactions
    Casadio, Rita
    Martelli, Pier Luigi
    Savojardo, Castrense
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2022, 12 (06)
  • [3] Using the Multi-instance Learning Method to Predict Protein-Protein Interactions with Domain Information
    Zhang, Yan-Ping
    Zha, Yongliang
    Li, Xinrui
    Zhao, Shu
    Du, Xiuquan
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, RSKT 2014, 2014, 8818 : 249 - 259
  • [4] Predicting disease genes using protein-protein interactions
    Oti, M.
    Snel, B.
    Huynen, M. A.
    Brunner, H. G.
    JOURNAL OF MEDICAL GENETICS, 2006, 43 (08) : 691 - 698
  • [5] Predicting protein-protein interactions using signature products
    Martin, S
    Roe, D
    Faulon, JL
    BIOINFORMATICS, 2005, 21 (02) : 218 - 226
  • [6] ProtInteract: A deep learning framework for predicting protein-protein interactions
    Soleymani, Farzan
    Paquet, Eric
    Viktor, Herna Lydia
    Michalowski, Wojtek
    Spinello, Davide
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 1324 - 1348
  • [7] CollaPPI: A Collaborative Learning Framework for Predicting Protein-Protein Interactions
    Ma, Wenjian
    Bi, Xiangpeng
    Jiang, Huasen
    Zhang, Shugang
    Wei, Zhiqiang
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (05) : 3167 - 3177
  • [8] Predicting protein-protein interactions in E-coli using machine learning methods
    Goyal, Kshama
    Vidyasagar, M.
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 2190 - 2195
  • [9] Predicting Protein-Protein Interactions Based on Ensemble Learning-Based Model from Protein Sequence
    Zhan, Xinke
    Xiao, Mang
    You, Zhuhong
    Yan, Chenggang
    Guo, Jianxin
    Wang, Liping
    Sun, Yaoqi
    Shang, Bingwan
    BIOLOGY-BASEL, 2022, 11 (07):
  • [10] ON GENERALIZED MULTIPLE-INSTANCE LEARNING
    Scott, Stephen
    Zhang, Jun
    Brown, Joshua
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2005, 5 (01) : 21 - 35