FeNi Nanoalloys Encapsulated in N-Doped CNTs Tangled with N-Doped Carbon Nanosheets as Efficient Multifunctional Catalysts for Overall Water Splitting and Rechargeable Zn-Air Batteries

被引:48
|
作者
Ren, Jin-Tao [1 ,2 ]
Chen, Lei [1 ,2 ]
Wang, Yan-Su [1 ,2 ]
Tian, Wen-Wen [1 ,2 ]
Gao, Li-Jiao [1 ,2 ]
Yuan, Zhong-Yong [1 ,2 ]
机构
[1] Nankai Univ, Natl Inst Adv Mat, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
[2] Nankai Univ, Key Lab Adv Energy Mat Chem, Minist Educ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300071, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
FeNi alloys; N-doping; carbon nanostructures; electrochemical reactions; electrocatalysis; OXYGEN REDUCTION; BIFUNCTIONAL ELECTROCATALYSTS; EVOLUTION; METAL;
D O I
10.1021/acssuschemeng.9b05238
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The exploration of high-efficiency and cost-effective multifunctional electrocatalysts is of significant importance for future sustainable energy conversion and storage systems. Herein, 3D hybrid structures composed of OD FeNi nanoalloys embedded in 1D N-doped bamboo-like CNTs tangled with 2D N-doped carbon nanosheets (FeNi@N-CNT/NCSs) are rationally fabricated through a feasible carbonization strategy. Benefiting from the firmly N-doped carbon-wrapped FeNi nanoalloys as catalytic sites and hierarchically porous nanoarchitecture for efficient mass diffusion and electron transport, the fabricated FeNi@N-CNT/NCSs exhibit high multifunctional electrochemcial activities, comparable to that of noble-metal-based benchmarks, associated with impressive stability. It is indicated that the FeNi alloys evidently determine electrocatalytic activities, and the presence of FeNi alloys obviously improve long-term reaction stability. In addition, the atomic ratio of Fe to Ni in FeNi alloys can significantly affect the electrochemical performance toward oxygen evolution reaction, oxygen reduction reaction, and hydrogen evolution reaction. By using FeNi@N-CNT/NCSs as the anodic and cathodic electrocatalysts, an outstanding overall water splitting performance is obtained with the low cell potential and good durability in 1.0 KOH. The assembled Zn-air batteries with the FeNi@N-CNT/NCSs air cathode using the liquid-state and all-solid-state electrolyte exhibit the superior charging discharging performance, robust lifetime, and high flexibility, capturing the critical potential in actual implementation of metal air batteries with portable or wearable characteristics. This work will shed advanced inspiration for the fabrication of highly-efficient multifunctional catalysts for various energy technologies.
引用
收藏
页码:223 / 237
页数:29
相关论文
共 50 条
  • [41] Bimetallic organic framework-derived rich pyridinic N-doped carbon nanotubes as oxygen catalysts for rechargeable Zn-air batteries
    Lai, Changgan
    Liu, Xianbin
    Wang, Ying
    Cao, Changqing
    Yin, Yanhong
    Wu, Billy
    Liu, Xinhua
    Yang, Shichun
    Liang, Tongxiang
    [J]. JOURNAL OF POWER SOURCES, 2020, 472
  • [42] Cobalt Nanoparticles Embedded in N-Doped Carbon Nanotubes on Reduced Graphene Oxide as Efficient Oxygen Catalysts for Zn-Air Batteries
    Peng, Xiaomin
    Wei, Licheng
    Liu, Yiyi
    Cen, Tianlun
    Ye, Zhifeng
    Zhu, Zhaogen
    Ni, Zhaotong
    Yuan, Dingsheng
    [J]. ENERGY & FUELS, 2020, 34 (07) : 8931 - 8938
  • [43] Ultrafine Co nanoislands grafted on tailored interpenetrating N-doped carbon nanoleaves: An efficient bifunctional electrocatalyst for rechargeable Zn-air batteries
    Zhang, Fuping
    Chen, Long
    Yang, Haiyi
    Zhang, Yinglin
    Peng, Yuanyuan
    Luo, Xing
    Ahmad, Ayyaz
    Ramzan, Naveed
    Xu, Yisheng
    Shi, Yulin
    [J]. Chemical Engineering Journal, 2022, 431
  • [44] Ultrafine Co nanoislands grafted on tailored interpenetrating N-doped carbon nanoleaves: An efficient bifunctional electrocatalyst for rechargeable Zn-air batteries
    Zhang, Fuping
    Chen, Long
    Yang, Haiyi
    Zhang, Yinglin
    Peng, Yuanyuan
    Luo, Xing
    Ahmad, Ayyaz
    Ramzan, Naveed
    Xu, Yisheng
    Shi, Yulin
    [J]. CHEMICAL ENGINEERING JOURNAL, 2022, 431
  • [45] N-doped porous carbon hollow microspheres encapsulated with iron-based nanocomposites as advanced bifunctional catalysts for rechargeable Zn-air battery
    Ran Hao
    Jin-Tao Ren
    Xian-Wei Lv
    Wei Li
    Yu-Ping Liu
    Zhong-Yong Yuan
    [J]. Journal of Energy Chemistry, 2020, 49 (10) : 14 - 21
  • [46] In-site coupling of NiFe layered double hydroxides with N-doped carbon nanosheets on carbon cloth as integrated cathode for rechargeable Zn-air batteries
    Song, Zhaohai
    Li, Zheng
    Liu, Yanqi
    Chen, Linlin
    Zhang, Jianmin
    Zheng, Zongmin
    [J]. CRYSTENGCOMM, 2022, 24 (39) : 6980 - 6986
  • [47] Advanced 3D Network of N-Doped Graphitic Carbon with FeNi Alloy Embedding for High-Performance Rechargeable Zn-Air Batteries
    Pandikassala, Ajmal
    Kurian, Maria
    Gangadharan, Pranav K.
    Torris, Arun
    Kurungot, Sreekumar
    [J]. ADVANCED SUSTAINABLE SYSTEMS, 2024, 8 (07):
  • [48] Vanadium Nitride Supported on N-Doped Carbon as High-Performance ORR Catalysts for Zn-Air Batteries
    Fu, Yidan
    Han, Lina
    Zheng, Pengfei
    Peng, Xianhui
    Xian, Xianglan
    Liu, Jinglin
    Zeng, Xiaoyuan
    Dong, Peng
    Xiao, Jie
    Zhang, Yingjie
    [J]. CATALYSTS, 2022, 12 (08)
  • [49] Structural regulation of N-doped carbon nanocages as high-performance bifunctional electrocatalysts for rechargeable Zn-air batteries
    Lai, Changgan
    Liu, Xianbin
    Cao, Changqing
    Wang, Ying
    Yin, Yanhong
    Liang, Tongxiang
    Dionysiou, Dionysios D.
    [J]. CARBON, 2021, 173 : 715 - 723
  • [50] Single-atom palladium anchored N-doped carbon towards oxygen electrocatalysis for rechargeable Zn-air batteries
    Han, Chunxiao
    Yi, Wenwen
    Feng, Sisi
    Li, Zhongping
    Song, Haiou
    [J]. DALTON TRANSACTIONS, 2022, 51 (32) : 12314 - 12323